Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator

We consider the inverse problem to identify an anisotropic conductivity from the Dirichlet-to-Neumann (DtN) map. We first find an explicit reconstruction of the boundary value of less regular anisotropic (transversally isotropic) conductivities and their derivatives. Based on the reconstruction form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2002-01, Vol.34 (3), p.719-735
Hauptverfasser: KANG, Hyeonbae, YUN, Kihyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the inverse problem to identify an anisotropic conductivity from the Dirichlet-to-Neumann (DtN) map. We first find an explicit reconstruction of the boundary value of less regular anisotropic (transversally isotropic) conductivities and their derivatives. Based on the reconstruction formula, we prove Holder stability, up to isometry, of the inverse problem using a local DtN map.
ISSN:0036-1410
1095-7154
DOI:10.1137/s0036141001395042