Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians

We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2004-01, Vol.36 (1), p.186-203
1. Verfasser: PISANTE, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 1
container_start_page 186
container_title SIAM journal on mathematical analysis
container_volume 36
creator PISANTE, Giovanni
description We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex.
doi_str_mv 10.1137/S0036141003426902
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923965433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597343731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-d06b35fdcf20551cd58f686de06807df6c34b3e3a9907b0c7aca38ef99f9fb903</originalsourceid><addsrcrecordid>eNplkE1LAzEYhIMoWKs_wFsQPK6-2Xzs5ihFrVDwUD14WrLZBFO2SU2ypf33bqnQg6c5zDwzMAjdEngghFaPSwAqCCOjsFJIKM_QhIDkRUU4O0eTg10c_Et0ldIKgAgmYYK-loO1TjvjM9bBdy674BO2IeL8bbDZuZSN1wYHi7cu6ZBc3uMU-uEU9MGP6Nbs8FytXZ-Dd8qna3RhVZ_MzZ9O0efL88dsXizeX99mT4tCUyhz0YFoKbedtiVwTnTHaytq0RkQNVSdFZqylhqqpISqBV0prWhtrJRW2lYCnaK7Y-8mhp_BpNyswhD9ONnIkkrBGaVjiBxDOoaUorHNJrq1ivuGQHM4sPl34Mjc_xWrpFVvo_LapRMoBCs5cPoL3xpxmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923965433</pqid></control><display><type>article</type><title>Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>PISANTE, Giovanni</creator><creatorcontrib>PISANTE, Giovanni</creatorcontrib><description><![CDATA[We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex.]]></description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/S0036141003426902</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Calculus of variations and optimal control ; Classical and quantum physics: mechanics and fields ; Classical mechanics of discrete systems: general mathematical aspects ; Control theory ; Exact sciences and technology ; Hypotheses ; Mathematical analysis ; Mathematics ; Nonlinear equations ; Physics ; Sciences and techniques of general use ; Viscosity</subject><ispartof>SIAM journal on mathematical analysis, 2004-01, Vol.36 (1), p.186-203</ispartof><rights>2005 INIST-CNRS</rights><rights>[Copyright] © 2004 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-d06b35fdcf20551cd58f686de06807df6c34b3e3a9907b0c7aca38ef99f9fb903</citedby><cites>FETCH-LOGICAL-c302t-d06b35fdcf20551cd58f686de06807df6c34b3e3a9907b0c7aca38ef99f9fb903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16642505$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PISANTE, Giovanni</creatorcontrib><title>Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians</title><title>SIAM journal on mathematical analysis</title><description><![CDATA[We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex.]]></description><subject>Calculus of variations and optimal control</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of discrete systems: general mathematical aspects</subject><subject>Control theory</subject><subject>Exact sciences and technology</subject><subject>Hypotheses</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Viscosity</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1LAzEYhIMoWKs_wFsQPK6-2Xzs5ihFrVDwUD14WrLZBFO2SU2ypf33bqnQg6c5zDwzMAjdEngghFaPSwAqCCOjsFJIKM_QhIDkRUU4O0eTg10c_Et0ldIKgAgmYYK-loO1TjvjM9bBdy674BO2IeL8bbDZuZSN1wYHi7cu6ZBc3uMU-uEU9MGP6Nbs8FytXZ-Dd8qna3RhVZ_MzZ9O0efL88dsXizeX99mT4tCUyhz0YFoKbedtiVwTnTHaytq0RkQNVSdFZqylhqqpISqBV0prWhtrJRW2lYCnaK7Y-8mhp_BpNyswhD9ONnIkkrBGaVjiBxDOoaUorHNJrq1ivuGQHM4sPl34Mjc_xWrpFVvo_LapRMoBCs5cPoL3xpxmg</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>PISANTE, Giovanni</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20040101</creationdate><title>Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians</title><author>PISANTE, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-d06b35fdcf20551cd58f686de06807df6c34b3e3a9907b0c7aca38ef99f9fb903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Calculus of variations and optimal control</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of discrete systems: general mathematical aspects</topic><topic>Control theory</topic><topic>Exact sciences and technology</topic><topic>Hypotheses</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PISANTE, Giovanni</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PISANTE, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>36</volume><issue>1</issue><spage>186</spage><epage>203</epage><pages>186-203</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract><![CDATA[We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex.]]></abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036141003426902</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2004-01, Vol.36 (1), p.186-203
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_923965433
source LOCUS - SIAM's Online Journal Archive
subjects Calculus of variations and optimal control
Classical and quantum physics: mechanics and fields
Classical mechanics of discrete systems: general mathematical aspects
Control theory
Exact sciences and technology
Hypotheses
Mathematical analysis
Mathematics
Nonlinear equations
Physics
Sciences and techniques of general use
Viscosity
title Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20conditions%20for%20the%20existence%20of%20viscosity%20solutions%20for%20nonconvex%20Hamiltonians&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=PISANTE,%20Giovanni&rft.date=2004-01-01&rft.volume=36&rft.issue=1&rft.spage=186&rft.epage=203&rft.pages=186-203&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/S0036141003426902&rft_dat=%3Cproquest_cross%3E2597343731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923965433&rft_id=info:pmid/&rfr_iscdi=true