Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians
We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2004-01, Vol.36 (1), p.186-203 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | SIAM journal on mathematical analysis |
container_volume | 36 |
creator | PISANTE, Giovanni |
description | We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex. |
doi_str_mv | 10.1137/S0036141003426902 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923965433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597343731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-d06b35fdcf20551cd58f686de06807df6c34b3e3a9907b0c7aca38ef99f9fb903</originalsourceid><addsrcrecordid>eNplkE1LAzEYhIMoWKs_wFsQPK6-2Xzs5ihFrVDwUD14WrLZBFO2SU2ypf33bqnQg6c5zDwzMAjdEngghFaPSwAqCCOjsFJIKM_QhIDkRUU4O0eTg10c_Et0ldIKgAgmYYK-loO1TjvjM9bBdy674BO2IeL8bbDZuZSN1wYHi7cu6ZBc3uMU-uEU9MGP6Nbs8FytXZ-Dd8qna3RhVZ_MzZ9O0efL88dsXizeX99mT4tCUyhz0YFoKbedtiVwTnTHaytq0RkQNVSdFZqylhqqpISqBV0prWhtrJRW2lYCnaK7Y-8mhp_BpNyswhD9ONnIkkrBGaVjiBxDOoaUorHNJrq1ivuGQHM4sPl34Mjc_xWrpFVvo_LapRMoBCs5cPoL3xpxmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923965433</pqid></control><display><type>article</type><title>Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>PISANTE, Giovanni</creator><creatorcontrib>PISANTE, Giovanni</creatorcontrib><description><![CDATA[We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex.]]></description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/S0036141003426902</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Calculus of variations and optimal control ; Classical and quantum physics: mechanics and fields ; Classical mechanics of discrete systems: general mathematical aspects ; Control theory ; Exact sciences and technology ; Hypotheses ; Mathematical analysis ; Mathematics ; Nonlinear equations ; Physics ; Sciences and techniques of general use ; Viscosity</subject><ispartof>SIAM journal on mathematical analysis, 2004-01, Vol.36 (1), p.186-203</ispartof><rights>2005 INIST-CNRS</rights><rights>[Copyright] © 2004 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-d06b35fdcf20551cd58f686de06807df6c34b3e3a9907b0c7aca38ef99f9fb903</citedby><cites>FETCH-LOGICAL-c302t-d06b35fdcf20551cd58f686de06807df6c34b3e3a9907b0c7aca38ef99f9fb903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16642505$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PISANTE, Giovanni</creatorcontrib><title>Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians</title><title>SIAM journal on mathematical analysis</title><description><![CDATA[We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex.]]></description><subject>Calculus of variations and optimal control</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of discrete systems: general mathematical aspects</subject><subject>Control theory</subject><subject>Exact sciences and technology</subject><subject>Hypotheses</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Viscosity</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1LAzEYhIMoWKs_wFsQPK6-2Xzs5ihFrVDwUD14WrLZBFO2SU2ypf33bqnQg6c5zDwzMAjdEngghFaPSwAqCCOjsFJIKM_QhIDkRUU4O0eTg10c_Et0ldIKgAgmYYK-loO1TjvjM9bBdy674BO2IeL8bbDZuZSN1wYHi7cu6ZBc3uMU-uEU9MGP6Nbs8FytXZ-Dd8qna3RhVZ_MzZ9O0efL88dsXizeX99mT4tCUyhz0YFoKbedtiVwTnTHaytq0RkQNVSdFZqylhqqpISqBV0prWhtrJRW2lYCnaK7Y-8mhp_BpNyswhD9ONnIkkrBGaVjiBxDOoaUorHNJrq1ivuGQHM4sPl34Mjc_xWrpFVvo_LapRMoBCs5cPoL3xpxmg</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>PISANTE, Giovanni</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20040101</creationdate><title>Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians</title><author>PISANTE, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-d06b35fdcf20551cd58f686de06807df6c34b3e3a9907b0c7aca38ef99f9fb903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Calculus of variations and optimal control</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of discrete systems: general mathematical aspects</topic><topic>Control theory</topic><topic>Exact sciences and technology</topic><topic>Hypotheses</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PISANTE, Giovanni</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PISANTE, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>36</volume><issue>1</issue><spage>186</spage><epage>203</epage><pages>186-203</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract><![CDATA[We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex.]]></abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036141003426902</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2004-01, Vol.36 (1), p.186-203 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_923965433 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Calculus of variations and optimal control Classical and quantum physics: mechanics and fields Classical mechanics of discrete systems: general mathematical aspects Control theory Exact sciences and technology Hypotheses Mathematical analysis Mathematics Nonlinear equations Physics Sciences and techniques of general use Viscosity |
title | Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20conditions%20for%20the%20existence%20of%20viscosity%20solutions%20for%20nonconvex%20Hamiltonians&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=PISANTE,%20Giovanni&rft.date=2004-01-01&rft.volume=36&rft.issue=1&rft.spage=186&rft.epage=203&rft.pages=186-203&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/S0036141003426902&rft_dat=%3Cproquest_cross%3E2597343731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923965433&rft_id=info:pmid/&rfr_iscdi=true |