Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians
We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2004-01, Vol.36 (1), p.186-203 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a sufficient geometric condition for the existence of a $W^{1,\infty}(\Omega)$ viscosity solution of the Hamilton--Jacobi equation $$ \left\{ \begin{array}{@{}r@{\;}c@{\;}lcc} F(Du) & = & 0 & \mbox{in} & \Omega, \\[2pt] u & = & \varphi & \mbox{on} & \partial\Omega, \end{array} \right. $$ where $\Omega \subset {\mathbb R}^n$ and $F:{\mathbb R}^n\to {\mathbb R}$ are not necessarily convex. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/S0036141003426902 |