Diffeomorphisms and nonlinear heat flows

We show that the gradient flow ${\mathbf u}$ on $L^2$ generated by the energy functional $I[{\mathbf u}] := \int_U \Phi(\det D{\mathbf u}) \, dx$ for vector-valued mappings is in some sense "integrable," meaning that (i) the inverse Jacobian $\beta := (\det D{\mathbf u})^{-1}$ satisfies a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2005-01, Vol.37 (3), p.737-751
Hauptverfasser: EVANS, L. C, SAVIN, O, GANGBO, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the gradient flow ${\mathbf u}$ on $L^2$ generated by the energy functional $I[{\mathbf u}] := \int_U \Phi(\det D{\mathbf u}) \, dx$ for vector-valued mappings is in some sense "integrable," meaning that (i) the inverse Jacobian $\beta := (\det D{\mathbf u})^{-1}$ satisfies a scalar nonlinear diffusion equation, and (ii) we can recover ${\mathbf u}$ by solving an ODE determined by $\beta$.
ISSN:0036-1410
1095-7154
DOI:10.1137/04061386X