Diffeomorphisms and nonlinear heat flows
We show that the gradient flow ${\mathbf u}$ on $L^2$ generated by the energy functional $I[{\mathbf u}] := \int_U \Phi(\det D{\mathbf u}) \, dx$ for vector-valued mappings is in some sense "integrable," meaning that (i) the inverse Jacobian $\beta := (\det D{\mathbf u})^{-1}$ satisfies a...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2005-01, Vol.37 (3), p.737-751 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the gradient flow ${\mathbf u}$ on $L^2$ generated by the energy functional $I[{\mathbf u}] := \int_U \Phi(\det D{\mathbf u}) \, dx$ for vector-valued mappings is in some sense "integrable," meaning that (i) the inverse Jacobian $\beta := (\det D{\mathbf u})^{-1}$ satisfies a scalar nonlinear diffusion equation, and (ii) we can recover ${\mathbf u}$ by solving an ODE determined by $\beta$. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/04061386X |