Poisson Kernels as Expansions in $\lowercase{q}$‐Racah Polynomials

This paper concerns stochastic processes on chains of arbitrary length whose Poisson kernel can be expressed in terms of the $q$-Racah polynomials, the most general $q$-deformed orthogonal polynomials in the discrete series of the Askey scheme. We give a new interpretation of this kernel as the prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2006-01, Vol.38 (3), p.977-984
Hauptverfasser: Albanese, Claudio, Lawi, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns stochastic processes on chains of arbitrary length whose Poisson kernel can be expressed in terms of the $q$-Racah polynomials, the most general $q$-deformed orthogonal polynomials in the discrete series of the Askey scheme. We give a new interpretation of this kernel as the probability transition density for a subordinated Markov process with only nearest neighbor hops. As an application, we give an elementary proof and extend a positivity result for a class of Poisson kernels which Gasper and Rahman established with direct methods.
ISSN:0036-1410
1095-7154
DOI:10.1137/S0036141003435035