Poisson Kernels as Expansions in $\lowercase{q}$‐Racah Polynomials
This paper concerns stochastic processes on chains of arbitrary length whose Poisson kernel can be expressed in terms of the $q$-Racah polynomials, the most general $q$-deformed orthogonal polynomials in the discrete series of the Askey scheme. We give a new interpretation of this kernel as the prob...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2006-01, Vol.38 (3), p.977-984 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns stochastic processes on chains of arbitrary length whose Poisson kernel can be expressed in terms of the $q$-Racah polynomials, the most general $q$-deformed orthogonal polynomials in the discrete series of the Askey scheme. We give a new interpretation of this kernel as the probability transition density for a subordinated Markov process with only nearest neighbor hops. As an application, we give an elementary proof and extend a positivity result for a class of Poisson kernels which Gasper and Rahman established with direct methods. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/S0036141003435035 |