Averages over Spheres for Kinetic Transport Equations with Velocity Derivatives in the Right-Hand Side

We prove estimates in hyperbolic Sobolev spaces $H^{s,\delta}(R^{1+d})$, $d\geq 3$, for velocity averages over spheres of solutions to the kinetic transport equation $\partial_{t} f + v \cdot \nabla_{x} f = \Omega^{i,j}_{v} g $, where $\Omega^{i,j}_{v} g$ are tangential velocity derivatives of $g$....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2008-01, Vol.40 (2), p.653-674
Hauptverfasser: Bournaveas, Nikolaos, Gutiérrez, Susana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove estimates in hyperbolic Sobolev spaces $H^{s,\delta}(R^{1+d})$, $d\geq 3$, for velocity averages over spheres of solutions to the kinetic transport equation $\partial_{t} f + v \cdot \nabla_{x} f = \Omega^{i,j}_{v} g $, where $\Omega^{i,j}_{v} g$ are tangential velocity derivatives of $g$. Our results extend to all dimensions earlier results of Bournaveas and Perthame in dimension two [J. Math. Pures Appl., 9 (2001), pp. 517-534]. We construct counterexamples to test the optimality of our results.
ISSN:0036-1410
1095-7154
DOI:10.1137/070698415