Averages over Spheres for Kinetic Transport Equations with Velocity Derivatives in the Right-Hand Side
We prove estimates in hyperbolic Sobolev spaces $H^{s,\delta}(R^{1+d})$, $d\geq 3$, for velocity averages over spheres of solutions to the kinetic transport equation $\partial_{t} f + v \cdot \nabla_{x} f = \Omega^{i,j}_{v} g $, where $\Omega^{i,j}_{v} g$ are tangential velocity derivatives of $g$....
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2008-01, Vol.40 (2), p.653-674 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove estimates in hyperbolic Sobolev spaces $H^{s,\delta}(R^{1+d})$, $d\geq 3$, for velocity averages over spheres of solutions to the kinetic transport equation $\partial_{t} f + v \cdot \nabla_{x} f = \Omega^{i,j}_{v} g $, where $\Omega^{i,j}_{v} g$ are tangential velocity derivatives of $g$. Our results extend to all dimensions earlier results of Bournaveas and Perthame in dimension two [J. Math. Pures Appl., 9 (2001), pp. 517-534]. We construct counterexamples to test the optimality of our results. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/070698415 |