A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

In this paper we study the nonlocal $p$-Laplacian-type diffusion equation $u_t(t,x)=\int_{\mathbb{R}^N}J(x-y)|u(t,y)-u(t,x)|^{p-2}(u(t,y)-u(t,x))\,dy$, $(t,x)\in]0,T[\times\Omega$, with $u(t,x)=\psi(x)$ for $(t,x)\in]0,T[\times(\mathbb{R}^N\setminus\Omega)$. If $p>1$, this is the nonlocal analogo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2009, Vol.40 (5), p.1815-1851
Hauptverfasser: ANDREU, F, MAZON, J. M, ROSSI, J. D, TOLEDO, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the nonlocal $p$-Laplacian-type diffusion equation $u_t(t,x)=\int_{\mathbb{R}^N}J(x-y)|u(t,y)-u(t,x)|^{p-2}(u(t,y)-u(t,x))\,dy$, $(t,x)\in]0,T[\times\Omega$, with $u(t,x)=\psi(x)$ for $(t,x)\in]0,T[\times(\mathbb{R}^N\setminus\Omega)$. If $p>1$, this is the nonlocal analogous problem to the well-known local $p$-Laplacian evolution equation $u_t=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ with Dirichlet boundary condition $u(t,x)=\psi(x)$ on $(t,x)\in]0,T[\times\partial\Omega$. If $p=1$, this is the nonlocal analogous to the total variation flow. When $p=+\infty$ (this has to be interpreted as the limit as $p\to+\infty$ in the previous model) we find an evolution problem that can be seen as a nonlocal model for the formation of sandpiles (here $u(t,x)$ stands for the height of the sandpile) with prescribed height of sand outside of $\Omega$. We prove, as main results, existence, uniqueness, a contraction property that gives well posedness of the problem, and the convergence of the solutions to solutions of the local analogous problem when a rescaling parameter goes to zero.
ISSN:0036-1410
1095-7154
DOI:10.1137/080720991