Uniform Asymptotic Approximation for Viscous Fluid Flow Down an Inclined Plane
An asymptotic method is developed for the linearized Navier-Stokes equations governing the time-dependent motion of a viscous fluid flow down an inclined plane. A diffusion equation for the first order approximation of the fluid surface elevation in a perturbation scheme is derived and a critical Re...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1975-05, Vol.6 (3), p.560-582 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An asymptotic method is developed for the linearized Navier-Stokes equations governing the time-dependent motion of a viscous fluid flow down an inclined plane. A diffusion equation for the first order approximation of the fluid surface elevation in a perturbation scheme is derived and a critical Reynolds number is defined based upon the well-posedness of the equation. Under a set of sufficient conditions it is shown that the solution of the diffusion equation is a uniform asymptotic approximation to the generalized solution of the full equations for all time by means of various $L_2 $ and pointwise estimates. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/0506051 |