The Laplacian spectrum of a graph
Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 1990-04, Vol.11 (2), p.218-238 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 |
---|---|
container_issue | 2 |
container_start_page | 218 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 11 |
creator | GRONE, R MERRIS, R SUNDER, V. S |
description | Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$. |
doi_str_mv | 10.1137/0611016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923807282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596850671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-5622075adaeeb3db427b3c493dfd1216056a67b36cc9ea8d4fd7bcb2edc550b93</originalsourceid><addsrcrecordid>eNpFz01LxDAQBuAgCtZV_AtVEE_VmaRJmqMsfkHBy3ou0yR1u-y2NWkP_nsrW_A0w_DwDi9j1wgPiEI_gkIEVCcsQTAy06j4KUugmPdcm-KcXcS4g1nkBhN2s9n6tKRhT7alLo2Dt2OYDmnfpJR-BRq2l-ysoX30V8tcsc-X5836LSs_Xt_XT2VmOfIxk4pz0JIceV8LV-dc18LmRrjGIUcFUpGaT8pa46lweeN0bWvunZUSaiNW7PaYO4T-e_JxrHb9FLr5ZWW4KEDzgs_o_ohs6GMMvqmG0B4o_FQI1V_9aqk_y7sljqKlfROos23850ZCAUaIX3QeVuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923807282</pqid></control><display><type>article</type><title>The Laplacian spectrum of a graph</title><source>SIAM Journals Online</source><creator>GRONE, R ; MERRIS, R ; SUNDER, V. S</creator><creatorcontrib>GRONE, R ; MERRIS, R ; SUNDER, V. S</creatorcontrib><description>Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/0611016</identifier><identifier>CODEN: SJMAEL</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Eigenvalues ; Eigenvectors ; Exact sciences and technology ; Graph theory ; Graphs ; Mathematics ; Sciences and techniques of general use</subject><ispartof>SIAM journal on matrix analysis and applications, 1990-04, Vol.11 (2), p.218-238</ispartof><rights>1991 INIST-CNRS</rights><rights>[Copyright] © 1990 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c212t-5622075adaeeb3db427b3c493dfd1216056a67b36cc9ea8d4fd7bcb2edc550b93</citedby><cites>FETCH-LOGICAL-c212t-5622075adaeeb3db427b3c493dfd1216056a67b36cc9ea8d4fd7bcb2edc550b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19508093$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GRONE, R</creatorcontrib><creatorcontrib>MERRIS, R</creatorcontrib><creatorcontrib>SUNDER, V. S</creatorcontrib><title>The Laplacian spectrum of a graph</title><title>SIAM journal on matrix analysis and applications</title><description>Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFz01LxDAQBuAgCtZV_AtVEE_VmaRJmqMsfkHBy3ou0yR1u-y2NWkP_nsrW_A0w_DwDi9j1wgPiEI_gkIEVCcsQTAy06j4KUugmPdcm-KcXcS4g1nkBhN2s9n6tKRhT7alLo2Dt2OYDmnfpJR-BRq2l-ysoX30V8tcsc-X5836LSs_Xt_XT2VmOfIxk4pz0JIceV8LV-dc18LmRrjGIUcFUpGaT8pa46lweeN0bWvunZUSaiNW7PaYO4T-e_JxrHb9FLr5ZWW4KEDzgs_o_ohs6GMMvqmG0B4o_FQI1V_9aqk_y7sljqKlfROos23850ZCAUaIX3QeVuA</recordid><startdate>19900401</startdate><enddate>19900401</enddate><creator>GRONE, R</creator><creator>MERRIS, R</creator><creator>SUNDER, V. S</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19900401</creationdate><title>The Laplacian spectrum of a graph</title><author>GRONE, R ; MERRIS, R ; SUNDER, V. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-5622075adaeeb3db427b3c493dfd1216056a67b36cc9ea8d4fd7bcb2edc550b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRONE, R</creatorcontrib><creatorcontrib>MERRIS, R</creatorcontrib><creatorcontrib>SUNDER, V. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRONE, R</au><au>MERRIS, R</au><au>SUNDER, V. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Laplacian spectrum of a graph</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>1990-04-01</date><risdate>1990</risdate><volume>11</volume><issue>2</issue><spage>218</spage><epage>238</epage><pages>218-238</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><coden>SJMAEL</coden><abstract>Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0611016</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 1990-04, Vol.11 (2), p.218-238 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_journals_923807282 |
source | SIAM Journals Online |
subjects | Combinatorics Combinatorics. Ordered structures Eigenvalues Eigenvectors Exact sciences and technology Graph theory Graphs Mathematics Sciences and techniques of general use |
title | The Laplacian spectrum of a graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Laplacian%20spectrum%20of%20a%20graph&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=GRONE,%20R&rft.date=1990-04-01&rft.volume=11&rft.issue=2&rft.spage=218&rft.epage=238&rft.pages=218-238&rft.issn=0895-4798&rft.eissn=1095-7162&rft.coden=SJMAEL&rft_id=info:doi/10.1137/0611016&rft_dat=%3Cproquest_cross%3E2596850671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923807282&rft_id=info:pmid/&rfr_iscdi=true |