The Laplacian spectrum of a graph

Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 1990-04, Vol.11 (2), p.218-238
Hauptverfasser: GRONE, R, MERRIS, R, SUNDER, V. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 2
container_start_page 218
container_title SIAM journal on matrix analysis and applications
container_volume 11
creator GRONE, R
MERRIS, R
SUNDER, V. S
description Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$.
doi_str_mv 10.1137/0611016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923807282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596850671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-5622075adaeeb3db427b3c493dfd1216056a67b36cc9ea8d4fd7bcb2edc550b93</originalsourceid><addsrcrecordid>eNpFz01LxDAQBuAgCtZV_AtVEE_VmaRJmqMsfkHBy3ou0yR1u-y2NWkP_nsrW_A0w_DwDi9j1wgPiEI_gkIEVCcsQTAy06j4KUugmPdcm-KcXcS4g1nkBhN2s9n6tKRhT7alLo2Dt2OYDmnfpJR-BRq2l-ysoX30V8tcsc-X5836LSs_Xt_XT2VmOfIxk4pz0JIceV8LV-dc18LmRrjGIUcFUpGaT8pa46lweeN0bWvunZUSaiNW7PaYO4T-e_JxrHb9FLr5ZWW4KEDzgs_o_ohs6GMMvqmG0B4o_FQI1V_9aqk_y7sljqKlfROos23850ZCAUaIX3QeVuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923807282</pqid></control><display><type>article</type><title>The Laplacian spectrum of a graph</title><source>SIAM Journals Online</source><creator>GRONE, R ; MERRIS, R ; SUNDER, V. S</creator><creatorcontrib>GRONE, R ; MERRIS, R ; SUNDER, V. S</creatorcontrib><description>Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/0611016</identifier><identifier>CODEN: SJMAEL</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Eigenvalues ; Eigenvectors ; Exact sciences and technology ; Graph theory ; Graphs ; Mathematics ; Sciences and techniques of general use</subject><ispartof>SIAM journal on matrix analysis and applications, 1990-04, Vol.11 (2), p.218-238</ispartof><rights>1991 INIST-CNRS</rights><rights>[Copyright] © 1990 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c212t-5622075adaeeb3db427b3c493dfd1216056a67b36cc9ea8d4fd7bcb2edc550b93</citedby><cites>FETCH-LOGICAL-c212t-5622075adaeeb3db427b3c493dfd1216056a67b36cc9ea8d4fd7bcb2edc550b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19508093$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GRONE, R</creatorcontrib><creatorcontrib>MERRIS, R</creatorcontrib><creatorcontrib>SUNDER, V. S</creatorcontrib><title>The Laplacian spectrum of a graph</title><title>SIAM journal on matrix analysis and applications</title><description>Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFz01LxDAQBuAgCtZV_AtVEE_VmaRJmqMsfkHBy3ou0yR1u-y2NWkP_nsrW_A0w_DwDi9j1wgPiEI_gkIEVCcsQTAy06j4KUugmPdcm-KcXcS4g1nkBhN2s9n6tKRhT7alLo2Dt2OYDmnfpJR-BRq2l-ysoX30V8tcsc-X5836LSs_Xt_XT2VmOfIxk4pz0JIceV8LV-dc18LmRrjGIUcFUpGaT8pa46lweeN0bWvunZUSaiNW7PaYO4T-e_JxrHb9FLr5ZWW4KEDzgs_o_ohs6GMMvqmG0B4o_FQI1V_9aqk_y7sljqKlfROos23850ZCAUaIX3QeVuA</recordid><startdate>19900401</startdate><enddate>19900401</enddate><creator>GRONE, R</creator><creator>MERRIS, R</creator><creator>SUNDER, V. S</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19900401</creationdate><title>The Laplacian spectrum of a graph</title><author>GRONE, R ; MERRIS, R ; SUNDER, V. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-5622075adaeeb3db427b3c493dfd1216056a67b36cc9ea8d4fd7bcb2edc550b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRONE, R</creatorcontrib><creatorcontrib>MERRIS, R</creatorcontrib><creatorcontrib>SUNDER, V. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRONE, R</au><au>MERRIS, R</au><au>SUNDER, V. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Laplacian spectrum of a graph</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>1990-04-01</date><risdate>1990</risdate><volume>11</volume><issue>2</issue><spage>218</spage><epage>238</epage><pages>218-238</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><coden>SJMAEL</coden><abstract>Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0611016</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 1990-04, Vol.11 (2), p.218-238
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_923807282
source SIAM Journals Online
subjects Combinatorics
Combinatorics. Ordered structures
Eigenvalues
Eigenvectors
Exact sciences and technology
Graph theory
Graphs
Mathematics
Sciences and techniques of general use
title The Laplacian spectrum of a graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Laplacian%20spectrum%20of%20a%20graph&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=GRONE,%20R&rft.date=1990-04-01&rft.volume=11&rft.issue=2&rft.spage=218&rft.epage=238&rft.pages=218-238&rft.issn=0895-4798&rft.eissn=1095-7162&rft.coden=SJMAEL&rft_id=info:doi/10.1137/0611016&rft_dat=%3Cproquest_cross%3E2596850671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923807282&rft_id=info:pmid/&rfr_iscdi=true