The Laplacian spectrum of a graph
Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 1990-04, Vol.11 (2), p.218-238 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$. |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/0611016 |