The Laplacian spectrum of a graph

Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 1990-04, Vol.11 (2), p.218-238
Hauptverfasser: GRONE, R, MERRIS, R, SUNDER, V. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G$ be a graph. The Laplacian matrix $L(G) = D(G) - A(G)$ is the difference of the diagonal matrix of vertex degrees and the 0-1 adjacency matrix. Various aspects of the spectrum of $L(G)$ are investigated. Particular attention is given to multiplicities of integer eigenvalues and to the effect on the spectrum of various modifications of $G$.
ISSN:0895-4798
1095-7162
DOI:10.1137/0611016