Computation of the Euler Angles of a Symmetric $3 \times 3$ Matrix

Closed form formulas for computing the eigenvectors of a symmetric $3 \times 3$ matrix are presented. The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas require approximately 90 arithmetic operations, six trigonometric evaluations, and two r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 1991-01, Vol.12 (1), p.41-48
Hauptverfasser: Bojanczyk, Adam W., Lutoborski, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 41
container_title SIAM journal on matrix analysis and applications
container_volume 12
creator Bojanczyk, Adam W.
Lutoborski, Adam
description Closed form formulas for computing the eigenvectors of a symmetric $3 \times 3$ matrix are presented. The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas require approximately 90 arithmetic operations, six trigonometric evaluations, and two root evaluations. These formulas may be applied as a subroutine in a parallel one-sided Jacobi-type method in which three rather than two columns, as is the case in the standard Jacobi method, are operated on in each step.
doi_str_mv 10.1137/0612005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923786812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596840191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c972-3c04131bc8ba22e7e0161d91276532c7eef622f1e3be07ba259d5d05ef5eb00e3</originalsourceid><addsrcrecordid>eNotkFtLw0AQhRdRMFbxLyxS8Ck6s5vNZh9rqBeo-GAfhZDLRFNyczcB--_d0j7NcObjzOEwdovwgCj1I8QoANQZCxCMCjXG4pwFkPg90ia5ZFfO7QAwjgwG7CkdunGe8qkZej7UfPohvp5bsnzVf7fkDlrOP_ddR5NtSr6U_GtqOn-QS_6ee-3vml3Ueevo5jQXbPu83qav4ebj5S1dbcLSaBHKEiKUWJRJkQtBmnwCrAwKHSspSk1Ux0LUSLIg0J5RplIVKKoVFQAkF-zuaDva4XcmN2W7Yba9_5gZIXUSJyg8dH-ESjs4Z6nORtt0ud1nCNmhnuxUj_wHmHFUBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923786812</pqid></control><display><type>article</type><title>Computation of the Euler Angles of a Symmetric $3 \times 3$ Matrix</title><source>SIAM Journals Online</source><creator>Bojanczyk, Adam W. ; Lutoborski, Adam</creator><creatorcontrib>Bojanczyk, Adam W. ; Lutoborski, Adam</creatorcontrib><description>Closed form formulas for computing the eigenvectors of a symmetric $3 \times 3$ matrix are presented. The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas require approximately 90 arithmetic operations, six trigonometric evaluations, and two root evaluations. These formulas may be applied as a subroutine in a parallel one-sided Jacobi-type method in which three rather than two columns, as is the case in the standard Jacobi method, are operated on in each step.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/0612005</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Eigenvalues ; Eigenvectors</subject><ispartof>SIAM journal on matrix analysis and applications, 1991-01, Vol.12 (1), p.41-48</ispartof><rights>[Copyright] © 1991 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c972-3c04131bc8ba22e7e0161d91276532c7eef622f1e3be07ba259d5d05ef5eb00e3</citedby><cites>FETCH-LOGICAL-c972-3c04131bc8ba22e7e0161d91276532c7eef622f1e3be07ba259d5d05ef5eb00e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Bojanczyk, Adam W.</creatorcontrib><creatorcontrib>Lutoborski, Adam</creatorcontrib><title>Computation of the Euler Angles of a Symmetric $3 \times 3$ Matrix</title><title>SIAM journal on matrix analysis and applications</title><description>Closed form formulas for computing the eigenvectors of a symmetric $3 \times 3$ matrix are presented. The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas require approximately 90 arithmetic operations, six trigonometric evaluations, and two root evaluations. These formulas may be applied as a subroutine in a parallel one-sided Jacobi-type method in which three rather than two columns, as is the case in the standard Jacobi method, are operated on in each step.</description><subject>Eigenvalues</subject><subject>Eigenvectors</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFtLw0AQhRdRMFbxLyxS8Ck6s5vNZh9rqBeo-GAfhZDLRFNyczcB--_d0j7NcObjzOEwdovwgCj1I8QoANQZCxCMCjXG4pwFkPg90ia5ZFfO7QAwjgwG7CkdunGe8qkZej7UfPohvp5bsnzVf7fkDlrOP_ddR5NtSr6U_GtqOn-QS_6ee-3vml3Ueevo5jQXbPu83qav4ebj5S1dbcLSaBHKEiKUWJRJkQtBmnwCrAwKHSspSk1Ux0LUSLIg0J5RplIVKKoVFQAkF-zuaDva4XcmN2W7Yba9_5gZIXUSJyg8dH-ESjs4Z6nORtt0ud1nCNmhnuxUj_wHmHFUBA</recordid><startdate>199101</startdate><enddate>199101</enddate><creator>Bojanczyk, Adam W.</creator><creator>Lutoborski, Adam</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>199101</creationdate><title>Computation of the Euler Angles of a Symmetric $3 \times 3$ Matrix</title><author>Bojanczyk, Adam W. ; Lutoborski, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c972-3c04131bc8ba22e7e0161d91276532c7eef622f1e3be07ba259d5d05ef5eb00e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Eigenvalues</topic><topic>Eigenvectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bojanczyk, Adam W.</creatorcontrib><creatorcontrib>Lutoborski, Adam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bojanczyk, Adam W.</au><au>Lutoborski, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the Euler Angles of a Symmetric $3 \times 3$ Matrix</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>1991-01</date><risdate>1991</risdate><volume>12</volume><issue>1</issue><spage>41</spage><epage>48</epage><pages>41-48</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>Closed form formulas for computing the eigenvectors of a symmetric $3 \times 3$ matrix are presented. The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas require approximately 90 arithmetic operations, six trigonometric evaluations, and two root evaluations. These formulas may be applied as a subroutine in a parallel one-sided Jacobi-type method in which three rather than two columns, as is the case in the standard Jacobi method, are operated on in each step.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0612005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 1991-01, Vol.12 (1), p.41-48
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_923786812
source SIAM Journals Online
subjects Eigenvalues
Eigenvectors
title Computation of the Euler Angles of a Symmetric $3 \times 3$ Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20Euler%20Angles%20of%20a%20Symmetric%20$3%20%5Ctimes%203$%20Matrix&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Bojanczyk,%20Adam%20W.&rft.date=1991-01&rft.volume=12&rft.issue=1&rft.spage=41&rft.epage=48&rft.pages=41-48&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/0612005&rft_dat=%3Cproquest_cross%3E2596840191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923786812&rft_id=info:pmid/&rfr_iscdi=true