Computation of the Euler Angles of a Symmetric $3 \times 3$ Matrix

Closed form formulas for computing the eigenvectors of a symmetric $3 \times 3$ matrix are presented. The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas require approximately 90 arithmetic operations, six trigonometric evaluations, and two r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 1991-01, Vol.12 (1), p.41-48
Hauptverfasser: Bojanczyk, Adam W., Lutoborski, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Closed form formulas for computing the eigenvectors of a symmetric $3 \times 3$ matrix are presented. The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas require approximately 90 arithmetic operations, six trigonometric evaluations, and two root evaluations. These formulas may be applied as a subroutine in a parallel one-sided Jacobi-type method in which three rather than two columns, as is the case in the standard Jacobi method, are operated on in each step.
ISSN:0895-4798
1095-7162
DOI:10.1137/0612005