Approximation by a Hermitian positive semidefinite Toeplitz matrix
The problem of finding the nearest Hermitian positive semidefinite Toeplitz matrix (in the Frobenius norm) of a given rank to an arbitrary matrix is considered. A special orthogonal basis and equally spaced frequencies allow good initial approximations. A second method using alternating projections...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 1993-07, Vol.14 (3), p.721-734 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of finding the nearest Hermitian positive semidefinite Toeplitz matrix (in the Frobenius norm) of a given rank to an arbitrary matrix is considered. A special orthogonal basis and equally spaced frequencies allow good initial approximations. A second method using alternating projections solves the case of unrestricted rank. Some interesting numerical results suggest possible applications to signal processing problems. |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/0614052 |