Approximation by a Hermitian positive semidefinite Toeplitz matrix

The problem of finding the nearest Hermitian positive semidefinite Toeplitz matrix (in the Frobenius norm) of a given rank to an arbitrary matrix is considered. A special orthogonal basis and equally spaced frequencies allow good initial approximations. A second method using alternating projections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 1993-07, Vol.14 (3), p.721-734
Hauptverfasser: SUFFRIDGE, T. J, HAYDEN, T. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of finding the nearest Hermitian positive semidefinite Toeplitz matrix (in the Frobenius norm) of a given rank to an arbitrary matrix is considered. A special orthogonal basis and equally spaced frequencies allow good initial approximations. A second method using alternating projections solves the case of unrestricted rank. Some interesting numerical results suggest possible applications to signal processing problems.
ISSN:0895-4798
1095-7162
DOI:10.1137/0614052