Efficient computation of the solutions to modified Lyapunov equations

This paper develops a solution method for modified Lyapunov equations in which the modification term $\mathcal{F}( Q )$ is a linear function of the solution $Q$. Equations of this form arise in robustness analysis and in homotopy algorithms developed for solving the nonstandard Riccati and Lyapunov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 1993-04, Vol.14 (2), p.420-431
Hauptverfasser: RICHTER, S, DAVIS, L. D, COLLINS, E. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a solution method for modified Lyapunov equations in which the modification term $\mathcal{F}( Q )$ is a linear function of the solution $Q$. Equations of this form arise in robustness analysis and in homotopy algorithms developed for solving the nonstandard Riccati and Lyapunov equations that arise in robust reduced-order design. The method relies on decomposing $\mathcal{F}( Q )$ as $\mathcal{F} ( Q ) = \mathcal{G} ( \phi ( Q ) )$, where $\phi ( Q )$ is an $m$-dimensional vector. It is shown that if $m$ is small, the new solution procedure is much more efficient than are solution procedures based on a straightforward transformation of the modified Lyapunov equation to a linear vector equation in $n( n + 1 )/2$ unknowns. The results are extended to develop an efficient procedure for computing the solutions to an arbitrary number of coupled Lyapunov equations in which the coupling terms are linear operators.
ISSN:0895-4798
1095-7162
DOI:10.1137/0614030