Stable Numerical Algorithms for Equilibrium Systems

An equilibrium system (also known as a Karush-Kuhn-Tucker (KKT) system, a saddlepoint system, or a sparse tableau) is a square linear system with a certain structure. Strang [SIAM Rev., 30 (1988), pp. 283-297] has observed that equilibrium systems arise in optimization, finite elements, structural a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 1994-10, Vol.15 (4), p.1108-1131
1. Verfasser: Vavasis, Stephen A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An equilibrium system (also known as a Karush-Kuhn-Tucker (KKT) system, a saddlepoint system, or a sparse tableau) is a square linear system with a certain structure. Strang [SIAM Rev., 30 (1988), pp. 283-297] has observed that equilibrium systems arise in optimization, finite elements, structural analysis, and electrical networks. Recently, Stewart [Linear Algebra Appl., 112 (1989), pp. 189-193] established a norm bound for a type of equilibrium system in the case when the "stiffness" portion of the system is very ill-conditioned. This paper investigates the algorithmic implications of Stewart's result. It is shown that several algorithms for equilibrium systems appearing in applications textbooks are unstable. A certain hybrid method is then proposed, and it is proved that the new method has the right stability property.
ISSN:0895-4798
1095-7162
DOI:10.1137/S0895479892230948