Quadratic Residual Bounds for the Hermitian Eigenvalue Problem
Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved usin...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 1998-04, Vol.19 (2), p.541-550 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 550 |
---|---|
container_issue | 2 |
container_start_page | 541 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 19 |
creator | Mathias, Roy |
description | Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved using a Schur complement technique. These results extend to singular values, to eigenvalues of non-Hermitian matrices, and to generalized eigenvalues. |
doi_str_mv | 10.1137/S0895479896310536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923756265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596595261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ff78b5d8c631fe6eb8e0ff2d08abb326a89cdcf3ea67d95052f8b5fad30e747e3</originalsourceid><addsrcrecordid>eNplkEtLxDAcxIMoWFc_gLfgvZpH87oIuqyusOD7XNLkH-3Sx5q0gt_elvXmaQ7zY2YYhM4puaSUq6tXoo0olNFGckoElwcoo8SIXFHJDlE22_nsH6OTlLaEUFkYmqHr59H6aIfa4RdItR9tg2_7sfMJhz7i4RPwGmJbD7Xt8Kr-gO7bNiPgp9hXDbSn6CjYJsHZny7Q-93qbbnON4_3D8ubTe6YIkMegtKV8NpN4wJIqDSQEJgn2lYVZ9Jq47wLHKxU3ggiWJj4YD0noAoFfIEu9rm72H-NkIZy24-xmypLw7gSkkkxQXQPudinFCGUu1i3Nv6UlJTzS-W_l_gvqa9akQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923756265</pqid></control><display><type>article</type><title>Quadratic Residual Bounds for the Hermitian Eigenvalue Problem</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Mathias, Roy</creator><creatorcontrib>Mathias, Roy</creatorcontrib><description>Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved using a Schur complement technique. These results extend to singular values, to eigenvalues of non-Hermitian matrices, and to generalized eigenvalues.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/S0895479896310536</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Eigenvalues ; Inequality ; Linear algebra ; Matrix</subject><ispartof>SIAM journal on matrix analysis and applications, 1998-04, Vol.19 (2), p.541-550</ispartof><rights>[Copyright] © 1998 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-ff78b5d8c631fe6eb8e0ff2d08abb326a89cdcf3ea67d95052f8b5fad30e747e3</citedby><cites>FETCH-LOGICAL-c270t-ff78b5d8c631fe6eb8e0ff2d08abb326a89cdcf3ea67d95052f8b5fad30e747e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids></links><search><creatorcontrib>Mathias, Roy</creatorcontrib><title>Quadratic Residual Bounds for the Hermitian Eigenvalue Problem</title><title>SIAM journal on matrix analysis and applications</title><description>Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved using a Schur complement technique. These results extend to singular values, to eigenvalues of non-Hermitian matrices, and to generalized eigenvalues.</description><subject>Eigenvalues</subject><subject>Inequality</subject><subject>Linear algebra</subject><subject>Matrix</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkEtLxDAcxIMoWFc_gLfgvZpH87oIuqyusOD7XNLkH-3Sx5q0gt_elvXmaQ7zY2YYhM4puaSUq6tXoo0olNFGckoElwcoo8SIXFHJDlE22_nsH6OTlLaEUFkYmqHr59H6aIfa4RdItR9tg2_7sfMJhz7i4RPwGmJbD7Xt8Kr-gO7bNiPgp9hXDbSn6CjYJsHZny7Q-93qbbnON4_3D8ubTe6YIkMegtKV8NpN4wJIqDSQEJgn2lYVZ9Jq47wLHKxU3ggiWJj4YD0noAoFfIEu9rm72H-NkIZy24-xmypLw7gSkkkxQXQPudinFCGUu1i3Nv6UlJTzS-W_l_gvqa9akQ</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Mathias, Roy</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19980401</creationdate><title>Quadratic Residual Bounds for the Hermitian Eigenvalue Problem</title><author>Mathias, Roy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ff78b5d8c631fe6eb8e0ff2d08abb326a89cdcf3ea67d95052f8b5fad30e747e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Eigenvalues</topic><topic>Inequality</topic><topic>Linear algebra</topic><topic>Matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathias, Roy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathias, Roy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic Residual Bounds for the Hermitian Eigenvalue Problem</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>19</volume><issue>2</issue><spage>541</spage><epage>550</epage><pages>541-550</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved using a Schur complement technique. These results extend to singular values, to eigenvalues of non-Hermitian matrices, and to generalized eigenvalues.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0895479896310536</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 1998-04, Vol.19 (2), p.541-550 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_journals_923756265 |
source | SIAM Journals Online; Business Source Complete |
subjects | Eigenvalues Inequality Linear algebra Matrix |
title | Quadratic Residual Bounds for the Hermitian Eigenvalue Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20Residual%20Bounds%20for%20the%20Hermitian%20Eigenvalue%20Problem&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Mathias,%20Roy&rft.date=1998-04-01&rft.volume=19&rft.issue=2&rft.spage=541&rft.epage=550&rft.pages=541-550&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/S0895479896310536&rft_dat=%3Cproquest_cross%3E2596595261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923756265&rft_id=info:pmid/&rfr_iscdi=true |