Quadratic Residual Bounds for the Hermitian Eigenvalue Problem

Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 1998-04, Vol.19 (2), p.541-550
1. Verfasser: Mathias, Roy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved using a Schur complement technique. These results extend to singular values, to eigenvalues of non-Hermitian matrices, and to generalized eigenvalues.
ISSN:0895-4798
1095-7162
DOI:10.1137/S0895479896310536