Quadratic Residual Bounds for the Hermitian Eigenvalue Problem
Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved usin...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 1998-04, Vol.19 (2), p.541-550 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \[ A = \left[ \begin{array}{cc} M & R \\ R^{\ast} & N \end{array} \right] {\rm and } \tilde{A} = \left[ \begin{array}{cc} M & 0 \\ 0 & N \end{array} \right] \] be Hermitian matrices. Stronger and more general $O(\|R\|^2)$ bounds relating the eigenvalues of A and A are proved using a Schur complement technique. These results extend to singular values, to eigenvalues of non-Hermitian matrices, and to generalized eigenvalues. |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/S0895479896310536 |