Generalized Schur Representation of Matrix-Valued Functions
The generalized Schur representation of a function matrix $\Omega ( e^{i\theta } )$ satisfying $\| \Omega \|_\infty \leqq1$ is investigated in connection with certain results concerning the extensions of block-Hankel operators acting on Hilbert spaces. Various properties of such representations are...
Gespeichert in:
Veröffentlicht in: | SIAM journal on algebraic and discrete methods 1981-06, Vol.2 (2), p.94-107 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The generalized Schur representation of a function matrix $\Omega ( e^{i\theta } )$ satisfying $\| \Omega \|_\infty \leqq1$ is investigated in connection with certain results concerning the extensions of block-Hankel operators acting on Hilbert spaces. Various properties of such representations are elucidated, including a parametrization of $\Omega ( e^{i\theta } )$ in terms of a double sequence of Schur parameter matrices. Special attention is paid to the way in which the representation and parametrization of the shifted function $e^{ik\theta } \Omega (e^{i\theta } )$ are related to those of $\Omega ( e^{i\theta } )$. In particular, the asymptotic behavior of the shifted representation for $k \to \pm \infty $ is studied in detail. The whole theory is developed so as to be of direct use in the analysis of half-plane block-Toeplitz systems. |
---|---|
ISSN: | 0196-5212 0895-4798 2168-345X 1095-7162 |
DOI: | 10.1137/0602013 |