Covering Regions with Squares

A unit square in $R^2 $ whose corners are integer lattice points is called a block. A board consists of a finite set of blocks. Given a board $B$, its graph $G(B)$ has vertices corresponding with the blocks of $B$, and two vertices of $G(B)$ are joined by an edge provided the corresponding blocks ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on algebraic and discrete methods 1981-09, Vol.2 (3), p.240-243
Hauptverfasser: Albertson, Michael O., O’Keefe, Claire J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A unit square in $R^2 $ whose corners are integer lattice points is called a block. A board consists of a finite set of blocks. Given a board $B$, its graph $G(B)$ has vertices corresponding with the blocks of $B$, and two vertices of $G(B)$ are joined by an edge provided the corresponding blocks are contained in a square subset of $B$. If $B$ is simply connected, then $G(B)$ is perfect.
ISSN:0196-5212
0895-4798
2168-345X
1095-7162
DOI:10.1137/0602026