Existence, uniqueness, and parametrization of Lagrangian invariant subspaces

The existence, uniqueness, and parametrization of Lagrangian invariant subspaces for Hamiltonian matrices is studied. Necessary and sufficient conditions and a complete parametrization are given. Some necessary and sufficient conditions for the existence of Hermitian solutions of algebraic Riccati e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2002, Vol.23 (4), p.1045-1069
Hauptverfasser: FREILING, Gerhard, MEHRMANN, Volker, HONGGUO XU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence, uniqueness, and parametrization of Lagrangian invariant subspaces for Hamiltonian matrices is studied. Necessary and sufficient conditions and a complete parametrization are given. Some necessary and sufficient conditions for the existence of Hermitian solutions of algebraic Riccati equations follow as simple corollaries.
ISSN:0895-4798
1095-7162
DOI:10.1137/S0895479800377228