Product triangular systems with shift

Systems of the form $(R^{(1)}\cdots R^{(p)}-\lambda I)x=b$, where each R(i) is an n-by-n upper triangular matrix, can be solved in O(pn3) flops if the matrix of coefficients is explicitly formed. We develop a new method for this system that circumvents the explicit product and requires only O(pn2) f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2002-01, Vol.24 (1), p.292-301
Hauptverfasser: MARTIN, Carla D, VAN LOAN, Charles F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systems of the form $(R^{(1)}\cdots R^{(p)}-\lambda I)x=b$, where each R(i) is an n-by-n upper triangular matrix, can be solved in O(pn3) flops if the matrix of coefficients is explicitly formed. We develop a new method for this system that circumvents the explicit product and requires only O(pn2) flops to execute. The error bounds for the new algorithm are essentially the same as the error bounds for the explicit method. The new algorithm extends readily to the situation when R(1) is upper quasi-triangular.
ISSN:0895-4798
1095-7162
DOI:10.1137/S0895479801396051