Product triangular systems with shift
Systems of the form $(R^{(1)}\cdots R^{(p)}-\lambda I)x=b$, where each R(i) is an n-by-n upper triangular matrix, can be solved in O(pn3) flops if the matrix of coefficients is explicitly formed. We develop a new method for this system that circumvents the explicit product and requires only O(pn2) f...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2002-01, Vol.24 (1), p.292-301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systems of the form $(R^{(1)}\cdots R^{(p)}-\lambda I)x=b$, where each R(i) is an n-by-n upper triangular matrix, can be solved in O(pn3) flops if the matrix of coefficients is explicitly formed. We develop a new method for this system that circumvents the explicit product and requires only O(pn2) flops to execute. The error bounds for the new algorithm are essentially the same as the error bounds for the explicit method. The new algorithm extends readily to the situation when R(1) is upper quasi-triangular. |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/S0895479801396051 |