A stabilized superfast solver for nonsymmetric Toeplitz systems

We present a stabilized superfast solver for nonsymmetric Toeplitz systems Tx=b. An explicit formula for T-1 is expressed in such a way that the matrix-vector product T^-1b can be calculated via FFTs and Hadamard products. This inversion formula involves certain polynomials that can be computed by s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2001-01, Vol.23 (2), p.494-510
Hauptverfasser: VAN BAREL, Marc, HEINIG, Georg, KRAVANJA, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a stabilized superfast solver for nonsymmetric Toeplitz systems Tx=b. An explicit formula for T-1 is expressed in such a way that the matrix-vector product T^-1b can be calculated via FFTs and Hadamard products. This inversion formula involves certain polynomials that can be computed by solving two linearized rational interpolation problems on the unit circle. The heart of our Toeplitz solver is a superfast algorithm to solve these interpolation problems. To stabilize the algorithm, i.e., to improve the accuracy, several techniques are used: pivoting, iterative improvement, downdating, and giving "difficult" interpolation points an adequate treatment. We have implemented our algorithm in Fortran 90. Numerical examples illustrate the effectiveness of our approach.
ISSN:0895-4798
1095-7162
DOI:10.1137/S0895479899362302