Minimal spectrally arbitrary sign patterns

An $n\times n$ sign pattern $\mathcal{A}$ is spectrally arbitrary if given any self-conjugate spectrum there exists a matrix realization of $\mathcal{A}$ with that spectrum. If replacing any nonzero entry of $\mathcal{A}$ by zero destroys this property, then $\mathcal{A}$ is a minimal spectrally arb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2004-01, Vol.26 (1), p.257-271
Hauptverfasser: BRITZ, T, MCDONALD, J. J, OLESKY, D. D, VAN DEN DRIESSCHE, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An $n\times n$ sign pattern $\mathcal{A}$ is spectrally arbitrary if given any self-conjugate spectrum there exists a matrix realization of $\mathcal{A}$ with that spectrum. If replacing any nonzero entry of $\mathcal{A}$ by zero destroys this property, then $\mathcal{A}$ is a minimal spectrally arbitrary sign pattern. Several families of sign patterns are presented that, for all $n\geq 3$, each contain an $n\times n$ minimal spectrally arbitrary sign pattern. These are the first families proven to have this property, and they improve previously known results. Furthermore, all $3\times 3$ minimal spectrally arbitrary sign patterns are determined, it is proved that any irreducible $n\times n$ spectrally arbitrary sign pattern must have at least $2n-1$ nonzero entries, and it is conjectured that the minimum number of nonzero entries is $2n$.
ISSN:0895-4798
1095-7162
DOI:10.1137/S0895479803432514