Solving Real Linear Systems with the Complex Schur Decomposition

If the complex Schur decomposition is used to solve a real linear system, then the computed solution generally has a complex component because of roundoff error. We show that the real part of the computed solution that is obtained in this way solves a nearby real linear system. Thus, it is "num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2007-01, Vol.29 (1), p.177-183
Hauptverfasser: Moravitz Martin, Carla D., Van Loan, Charles F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1
container_start_page 177
container_title SIAM journal on matrix analysis and applications
container_volume 29
creator Moravitz Martin, Carla D.
Van Loan, Charles F.
description If the complex Schur decomposition is used to solve a real linear system, then the computed solution generally has a complex component because of roundoff error. We show that the real part of the computed solution that is obtained in this way solves a nearby real linear system. Thus, it is "numerically safe" to obtain real solutions to real linear systems via the complex Schur decomposition. This result is useful in certain Kronecker product situations where fast linear equation solving is made possible by reducing the involved matrices to their complex Schur form. This is critical because in these applications one cannot work with the real Schur form without greatly increasing the volume of work.
doi_str_mv 10.1137/050631690
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923681726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596222421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-74552dc618773a4eed304cf4d6ec32d3bfa996ce930da218b88256c04cdbf9173</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOI4u_AfBnYtqbtLmsVPq-IABwdF1SdNb26HT1KSjzr-3MuLqnAPfuRcOIefArgCEumYZkwKkYQdkBsxkiQLJD8mM6cmnyuhjchLjmjGQqYEZuVn57rPt3-kL2o4u2x5toKtdHHET6Vc7NnRskOZ-M3T4TVeu2QZ6h27KPrZj6_tTclTbLuLZn87J2_3iNX9Mls8PT_ntMnE8k2Oi0izjlZOglRI2RawES12dVhKd4JUoa2uMdGgEqywHXWo99dzEVGVtQIk5udjfHYL_2GIci7Xfhn56WRgupAbF5QRd7iEXfIwB62II7caGXQGs-N2n-N9H_ADWAVZ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923681726</pqid></control><display><type>article</type><title>Solving Real Linear Systems with the Complex Schur Decomposition</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Moravitz Martin, Carla D. ; Van Loan, Charles F.</creator><creatorcontrib>Moravitz Martin, Carla D. ; Van Loan, Charles F.</creatorcontrib><description>If the complex Schur decomposition is used to solve a real linear system, then the computed solution generally has a complex component because of roundoff error. We show that the real part of the computed solution that is obtained in this way solves a nearby real linear system. Thus, it is "numerically safe" to obtain real solutions to real linear systems via the complex Schur decomposition. This result is useful in certain Kronecker product situations where fast linear equation solving is made possible by reducing the involved matrices to their complex Schur form. This is critical because in these applications one cannot work with the real Schur form without greatly increasing the volume of work.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/050631690</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Decomposition ; Eigenvalues ; Error analysis</subject><ispartof>SIAM journal on matrix analysis and applications, 2007-01, Vol.29 (1), p.177-183</ispartof><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-74552dc618773a4eed304cf4d6ec32d3bfa996ce930da218b88256c04cdbf9173</citedby><cites>FETCH-LOGICAL-c256t-74552dc618773a4eed304cf4d6ec32d3bfa996ce930da218b88256c04cdbf9173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Moravitz Martin, Carla D.</creatorcontrib><creatorcontrib>Van Loan, Charles F.</creatorcontrib><title>Solving Real Linear Systems with the Complex Schur Decomposition</title><title>SIAM journal on matrix analysis and applications</title><description>If the complex Schur decomposition is used to solve a real linear system, then the computed solution generally has a complex component because of roundoff error. We show that the real part of the computed solution that is obtained in this way solves a nearby real linear system. Thus, it is "numerically safe" to obtain real solutions to real linear systems via the complex Schur decomposition. This result is useful in certain Kronecker product situations where fast linear equation solving is made possible by reducing the involved matrices to their complex Schur form. This is critical because in these applications one cannot work with the real Schur form without greatly increasing the volume of work.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Error analysis</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLxDAUhYMoOI4u_AfBnYtqbtLmsVPq-IABwdF1SdNb26HT1KSjzr-3MuLqnAPfuRcOIefArgCEumYZkwKkYQdkBsxkiQLJD8mM6cmnyuhjchLjmjGQqYEZuVn57rPt3-kL2o4u2x5toKtdHHET6Vc7NnRskOZ-M3T4TVeu2QZ6h27KPrZj6_tTclTbLuLZn87J2_3iNX9Mls8PT_ntMnE8k2Oi0izjlZOglRI2RawES12dVhKd4JUoa2uMdGgEqywHXWo99dzEVGVtQIk5udjfHYL_2GIci7Xfhn56WRgupAbF5QRd7iEXfIwB62II7caGXQGs-N2n-N9H_ADWAVZ5</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Moravitz Martin, Carla D.</creator><creator>Van Loan, Charles F.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20070101</creationdate><title>Solving Real Linear Systems with the Complex Schur Decomposition</title><author>Moravitz Martin, Carla D. ; Van Loan, Charles F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-74552dc618773a4eed304cf4d6ec32d3bfa996ce930da218b88256c04cdbf9173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Error analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moravitz Martin, Carla D.</creatorcontrib><creatorcontrib>Van Loan, Charles F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moravitz Martin, Carla D.</au><au>Van Loan, Charles F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Real Linear Systems with the Complex Schur Decomposition</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>29</volume><issue>1</issue><spage>177</spage><epage>183</epage><pages>177-183</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>If the complex Schur decomposition is used to solve a real linear system, then the computed solution generally has a complex component because of roundoff error. We show that the real part of the computed solution that is obtained in this way solves a nearby real linear system. Thus, it is "numerically safe" to obtain real solutions to real linear systems via the complex Schur decomposition. This result is useful in certain Kronecker product situations where fast linear equation solving is made possible by reducing the involved matrices to their complex Schur form. This is critical because in these applications one cannot work with the real Schur form without greatly increasing the volume of work.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050631690</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 2007-01, Vol.29 (1), p.177-183
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_923681726
source SIAM Journals Online; Business Source Complete
subjects Algorithms
Applied mathematics
Decomposition
Eigenvalues
Error analysis
title Solving Real Linear Systems with the Complex Schur Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Real%20Linear%20Systems%20with%20the%20Complex%20Schur%20Decomposition&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Moravitz%20Martin,%20Carla%20D.&rft.date=2007-01-01&rft.volume=29&rft.issue=1&rft.spage=177&rft.epage=183&rft.pages=177-183&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/050631690&rft_dat=%3Cproquest_cross%3E2596222421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923681726&rft_id=info:pmid/&rfr_iscdi=true