Solving Real Linear Systems with the Complex Schur Decomposition

If the complex Schur decomposition is used to solve a real linear system, then the computed solution generally has a complex component because of roundoff error. We show that the real part of the computed solution that is obtained in this way solves a nearby real linear system. Thus, it is "num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2007-01, Vol.29 (1), p.177-183
Hauptverfasser: Moravitz Martin, Carla D., Van Loan, Charles F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If the complex Schur decomposition is used to solve a real linear system, then the computed solution generally has a complex component because of roundoff error. We show that the real part of the computed solution that is obtained in this way solves a nearby real linear system. Thus, it is "numerically safe" to obtain real solutions to real linear systems via the complex Schur decomposition. This result is useful in certain Kronecker product situations where fast linear equation solving is made possible by reducing the involved matrices to their complex Schur form. This is critical because in these applications one cannot work with the real Schur form without greatly increasing the volume of work.
ISSN:0895-4798
1095-7162
DOI:10.1137/050631690