The A Priori Tan $\Theta$ Theorem for Eigenvectors

Let $A$ be a self-adjoint operator on a Hilbert space $\mathfrak{H}$. Assume that the spectrum of $A$ consists of two disjoint components $\sigma_0$ and $\sigma_1$ such that the convex hull of the set $\sigma_0$ does not intersect the set $\sigma_1$. Let $V$ be a bounded self-adjoint operator on $\m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2007-01, Vol.29 (2), p.685-697
Hauptverfasser: Albeverio, Sergio, Motovilov, Alexander K., Selin, Alexei V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $A$ be a self-adjoint operator on a Hilbert space $\mathfrak{H}$. Assume that the spectrum of $A$ consists of two disjoint components $\sigma_0$ and $\sigma_1$ such that the convex hull of the set $\sigma_0$ does not intersect the set $\sigma_1$. Let $V$ be a bounded self-adjoint operator on $\mathfrak{H}$ off-diagonal with respect to the orthogonal decomposition $\mathfrak{H}=\mathfrak{H}_0\oplus\mathfrak{H}_1$, where $\mathfrak{H}_0$ and $\mathfrak{H}_1$ are the spectral subspaces of $A$ associated with the spectral sets $\sigma_0$ and $\sigma_1$, respectively. It is known that if $\|V\|0$, then the perturbation $V$ does not close the gaps between $\sigma_0$ and $\sigma_1$. Assuming that $f$ is an eigenvector of the perturbed operator $A+V$ associated with its eigenvalue in the interval $(\mathrm{min}(\sigma_0)-d,\mathrm{max}(\sigma_0)+d)$, we prove that under the condition $\|V\|
ISSN:0895-4798
1095-7162
DOI:10.1137/06065667X