The A Priori Tan $\Theta$ Theorem for Eigenvectors
Let $A$ be a self-adjoint operator on a Hilbert space $\mathfrak{H}$. Assume that the spectrum of $A$ consists of two disjoint components $\sigma_0$ and $\sigma_1$ such that the convex hull of the set $\sigma_0$ does not intersect the set $\sigma_1$. Let $V$ be a bounded self-adjoint operator on $\m...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2007-01, Vol.29 (2), p.685-697 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $A$ be a self-adjoint operator on a Hilbert space $\mathfrak{H}$. Assume that the spectrum of $A$ consists of two disjoint components $\sigma_0$ and $\sigma_1$ such that the convex hull of the set $\sigma_0$ does not intersect the set $\sigma_1$. Let $V$ be a bounded self-adjoint operator on $\mathfrak{H}$ off-diagonal with respect to the orthogonal decomposition $\mathfrak{H}=\mathfrak{H}_0\oplus\mathfrak{H}_1$, where $\mathfrak{H}_0$ and $\mathfrak{H}_1$ are the spectral subspaces of $A$ associated with the spectral sets $\sigma_0$ and $\sigma_1$, respectively. It is known that if $\|V\|0$, then the perturbation $V$ does not close the gaps between $\sigma_0$ and $\sigma_1$. Assuming that $f$ is an eigenvector of the perturbed operator $A+V$ associated with its eigenvalue in the interval $(\mathrm{min}(\sigma_0)-d,\mathrm{max}(\sigma_0)+d)$, we prove that under the condition $\|V\| |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/06065667X |