A Subspace‐Based Method for Solving Lagrange–Sylvester Interpolation Problems

In this paper, we study the Lagrange-Sylvester interpolation of rational matrix functions which are analytic at infinity, and propose a new interpolation algorithm based on the recent subspace-based identification methods. The proposed algorithm is numerically efficient and delivers a minimal interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2007-01, Vol.29 (2), p.377-395
Hauptverfasser: Akc¸ay, Huseyin, Turkay, Semiha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the Lagrange-Sylvester interpolation of rational matrix functions which are analytic at infinity, and propose a new interpolation algorithm based on the recent subspace-based identification methods. The proposed algorithm is numerically efficient and delivers a minimal interpolant in state-space form. The solvability condition for the subspace-based algorithm is particularly simple and depends only on the total multiplicity of the interpolation nodes. As an application, we consider subspace-based system identification with interpolation constraints, which arises, for example, in the identification of continuous-time systems with a given relative degree.
ISSN:0895-4798
1095-7162
DOI:10.1137/050622171