On the Minimum Rank Among Positive Semidefinite Matrices with a Given Graph

Let $\mathcal{P}(G)$ be the set of all positive semidefinite matrices whose graph is $G$, and $\operatorname{msr}(G)$ be the minimum rank of all matrices in $\mathcal{P}(G)$. Upper and lower bounds for $\operatorname{msr}(G)$ are given and used to determine $\operatorname{msr}(G)$ for some well-know...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2008-01, Vol.30 (2), p.731-740
Hauptverfasser: Booth, Matthew, Hackney, Philip, Harris, Benjamin, Johnson, Charles R., Lay, Margaret, Mitchell, Lon H., Narayan, Sivaram K., Pascoe, Amanda, Steinmetz, Kelly, Sutton, Brian D., Wang, Wendy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\mathcal{P}(G)$ be the set of all positive semidefinite matrices whose graph is $G$, and $\operatorname{msr}(G)$ be the minimum rank of all matrices in $\mathcal{P}(G)$. Upper and lower bounds for $\operatorname{msr}(G)$ are given and used to determine $\operatorname{msr}(G)$ for some well-known graphs, including chordal graphs, and for all simple graphs on less than seven vertices.
ISSN:0895-4798
1095-7162
DOI:10.1137/050629793