On the Minimum Rank Among Positive Semidefinite Matrices with a Given Graph
Let $\mathcal{P}(G)$ be the set of all positive semidefinite matrices whose graph is $G$, and $\operatorname{msr}(G)$ be the minimum rank of all matrices in $\mathcal{P}(G)$. Upper and lower bounds for $\operatorname{msr}(G)$ are given and used to determine $\operatorname{msr}(G)$ for some well-know...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2008-01, Vol.30 (2), p.731-740 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\mathcal{P}(G)$ be the set of all positive semidefinite matrices whose graph is $G$, and $\operatorname{msr}(G)$ be the minimum rank of all matrices in $\mathcal{P}(G)$. Upper and lower bounds for $\operatorname{msr}(G)$ are given and used to determine $\operatorname{msr}(G)$ for some well-known graphs, including chordal graphs, and for all simple graphs on less than seven vertices. |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/050629793 |