Galerkin's Method for Some Highly Nonlinear Problems

Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM J. Numer. Anal.; (United States) 1977-04, Vol.14 (2), p.327-347
1. Verfasser: Dendy, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 2
container_start_page 327
container_title SIAM J. Numer. Anal.; (United States)
container_volume 14
creator Dendy, J. E.
description Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained.
doi_str_mv 10.1137/0714021
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_proquest_journals_923638654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156789</jstor_id><sourcerecordid>2156789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-1d782b13bf5e3f8c91cefe91439b4477e9a6f7e808882bc4d3bc2eba829e4e183</originalsourceid><addsrcrecordid>eNpF0M1KAzEUBeAgCtYqvoCLwU1Xo7lJZpIspWgr1B9Q12Emc2OnTic1SRd9e0dadHU48HG5HEIugd4AcHlLJQjK4IiMgOoilyDpMRlRysscBNOn5CzGFR26Aj4iYlZ1GL7afhKzJ0xL32TOh-zNrzGbt5_Lbpc9-75re6xC9hp83eE6npMTV3URLw45Jh8P9-_Teb54mT1O7xa5ZZymHBqpWA28dgVyp6wGiw41CK5rIaREXZVOoqJKDc6KhteWYV0pplEgKD4m1_u7PqbWRNsmtEvr-x5tMiXjglH-jzbBf28xJrPy29APfxnNeMlVWYgBTfbIBh9jQGc2oV1XYWeAmt_ZzGG2QV7t5SomH_4Yg6KUSvMfB7FlzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923638654</pqid></control><display><type>article</type><title>Galerkin's Method for Some Highly Nonlinear Problems</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Dendy, J. E.</creator><creatorcontrib>Dendy, J. E. ; Los Alamos Scientific Lab., NM</creatorcontrib><description>Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0714021</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>990200 - Mathematics &amp; Computers ; Application programming interfaces ; Boundary conditions ; BOUNDARY-VALUE PROBLEMS ; Error rates ; Estimates ; Estimation methods ; Galerkin methods ; GALERKIN-PETROV METHOD ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Integers ; ITERATIVE METHODS ; NONLINEAR PROBLEMS ; Nonlinearity ; NUMERICAL SOLUTION ; Ordinary differential equations ; Partial differential equations ; SERIES EXPANSION ; Sine function</subject><ispartof>SIAM J. Numer. Anal.; (United States), 1977-04, Vol.14 (2), p.327-347</ispartof><rights>Copyright 1977 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1977 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-1d782b13bf5e3f8c91cefe91439b4477e9a6f7e808882bc4d3bc2eba829e4e183</citedby><cites>FETCH-LOGICAL-c230t-1d782b13bf5e3f8c91cefe91439b4477e9a6f7e808882bc4d3bc2eba829e4e183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156789$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156789$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,885,3182,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6234203$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dendy, J. E.</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., NM</creatorcontrib><title>Galerkin's Method for Some Highly Nonlinear Problems</title><title>SIAM J. Numer. Anal.; (United States)</title><description>Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained.</description><subject>990200 - Mathematics &amp; Computers</subject><subject>Application programming interfaces</subject><subject>Boundary conditions</subject><subject>BOUNDARY-VALUE PROBLEMS</subject><subject>Error rates</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Galerkin methods</subject><subject>GALERKIN-PETROV METHOD</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Integers</subject><subject>ITERATIVE METHODS</subject><subject>NONLINEAR PROBLEMS</subject><subject>Nonlinearity</subject><subject>NUMERICAL SOLUTION</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>SERIES EXPANSION</subject><subject>Sine function</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpF0M1KAzEUBeAgCtYqvoCLwU1Xo7lJZpIspWgr1B9Q12Emc2OnTic1SRd9e0dadHU48HG5HEIugd4AcHlLJQjK4IiMgOoilyDpMRlRysscBNOn5CzGFR26Aj4iYlZ1GL7afhKzJ0xL32TOh-zNrzGbt5_Lbpc9-75re6xC9hp83eE6npMTV3URLw45Jh8P9-_Teb54mT1O7xa5ZZymHBqpWA28dgVyp6wGiw41CK5rIaREXZVOoqJKDc6KhteWYV0pplEgKD4m1_u7PqbWRNsmtEvr-x5tMiXjglH-jzbBf28xJrPy29APfxnNeMlVWYgBTfbIBh9jQGc2oV1XYWeAmt_ZzGG2QV7t5SomH_4Yg6KUSvMfB7FlzA</recordid><startdate>19770401</startdate><enddate>19770401</enddate><creator>Dendy, J. E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>19770401</creationdate><title>Galerkin's Method for Some Highly Nonlinear Problems</title><author>Dendy, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-1d782b13bf5e3f8c91cefe91439b4477e9a6f7e808882bc4d3bc2eba829e4e183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>990200 - Mathematics &amp; Computers</topic><topic>Application programming interfaces</topic><topic>Boundary conditions</topic><topic>BOUNDARY-VALUE PROBLEMS</topic><topic>Error rates</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Galerkin methods</topic><topic>GALERKIN-PETROV METHOD</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Integers</topic><topic>ITERATIVE METHODS</topic><topic>NONLINEAR PROBLEMS</topic><topic>Nonlinearity</topic><topic>NUMERICAL SOLUTION</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>SERIES EXPANSION</topic><topic>Sine function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dendy, J. E.</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., NM</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>SIAM J. Numer. Anal.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dendy, J. E.</au><aucorp>Los Alamos Scientific Lab., NM</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galerkin's Method for Some Highly Nonlinear Problems</atitle><jtitle>SIAM J. Numer. Anal.; (United States)</jtitle><date>1977-04-01</date><risdate>1977</risdate><volume>14</volume><issue>2</issue><spage>327</spage><epage>347</epage><pages>327-347</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0714021</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM J. Numer. Anal.; (United States), 1977-04, Vol.14 (2), p.327-347
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_923638654
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects 990200 - Mathematics & Computers
Application programming interfaces
Boundary conditions
BOUNDARY-VALUE PROBLEMS
Error rates
Estimates
Estimation methods
Galerkin methods
GALERKIN-PETROV METHOD
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Integers
ITERATIVE METHODS
NONLINEAR PROBLEMS
Nonlinearity
NUMERICAL SOLUTION
Ordinary differential equations
Partial differential equations
SERIES EXPANSION
Sine function
title Galerkin's Method for Some Highly Nonlinear Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galerkin's%20Method%20for%20Some%20Highly%20Nonlinear%20Problems&rft.jtitle=SIAM%20J.%20Numer.%20Anal.;%20(United%20States)&rft.au=Dendy,%20J.%20E.&rft.aucorp=Los%20Alamos%20Scientific%20Lab.,%20NM&rft.date=1977-04-01&rft.volume=14&rft.issue=2&rft.spage=327&rft.epage=347&rft.pages=327-347&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0714021&rft_dat=%3Cjstor_osti_%3E2156789%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923638654&rft_id=info:pmid/&rft_jstor_id=2156789&rfr_iscdi=true