Galerkin's Method for Some Highly Nonlinear Problems
Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\pa...
Gespeichert in:
Veröffentlicht in: | SIAM J. Numer. Anal.; (United States) 1977-04, Vol.14 (2), p.327-347 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 2 |
container_start_page | 327 |
container_title | SIAM J. Numer. Anal.; (United States) |
container_volume | 14 |
creator | Dendy, J. E. |
description | Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained. |
doi_str_mv | 10.1137/0714021 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_proquest_journals_923638654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156789</jstor_id><sourcerecordid>2156789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-1d782b13bf5e3f8c91cefe91439b4477e9a6f7e808882bc4d3bc2eba829e4e183</originalsourceid><addsrcrecordid>eNpF0M1KAzEUBeAgCtYqvoCLwU1Xo7lJZpIspWgr1B9Q12Emc2OnTic1SRd9e0dadHU48HG5HEIugd4AcHlLJQjK4IiMgOoilyDpMRlRysscBNOn5CzGFR26Aj4iYlZ1GL7afhKzJ0xL32TOh-zNrzGbt5_Lbpc9-75re6xC9hp83eE6npMTV3URLw45Jh8P9-_Teb54mT1O7xa5ZZymHBqpWA28dgVyp6wGiw41CK5rIaREXZVOoqJKDc6KhteWYV0pplEgKD4m1_u7PqbWRNsmtEvr-x5tMiXjglH-jzbBf28xJrPy29APfxnNeMlVWYgBTfbIBh9jQGc2oV1XYWeAmt_ZzGG2QV7t5SomH_4Yg6KUSvMfB7FlzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923638654</pqid></control><display><type>article</type><title>Galerkin's Method for Some Highly Nonlinear Problems</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Dendy, J. E.</creator><creatorcontrib>Dendy, J. E. ; Los Alamos Scientific Lab., NM</creatorcontrib><description>Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0714021</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>990200 - Mathematics & Computers ; Application programming interfaces ; Boundary conditions ; BOUNDARY-VALUE PROBLEMS ; Error rates ; Estimates ; Estimation methods ; Galerkin methods ; GALERKIN-PETROV METHOD ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Integers ; ITERATIVE METHODS ; NONLINEAR PROBLEMS ; Nonlinearity ; NUMERICAL SOLUTION ; Ordinary differential equations ; Partial differential equations ; SERIES EXPANSION ; Sine function</subject><ispartof>SIAM J. Numer. Anal.; (United States), 1977-04, Vol.14 (2), p.327-347</ispartof><rights>Copyright 1977 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1977 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-1d782b13bf5e3f8c91cefe91439b4477e9a6f7e808882bc4d3bc2eba829e4e183</citedby><cites>FETCH-LOGICAL-c230t-1d782b13bf5e3f8c91cefe91439b4477e9a6f7e808882bc4d3bc2eba829e4e183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156789$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156789$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,885,3182,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6234203$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dendy, J. E.</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., NM</creatorcontrib><title>Galerkin's Method for Some Highly Nonlinear Problems</title><title>SIAM J. Numer. Anal.; (United States)</title><description>Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained.</description><subject>990200 - Mathematics & Computers</subject><subject>Application programming interfaces</subject><subject>Boundary conditions</subject><subject>BOUNDARY-VALUE PROBLEMS</subject><subject>Error rates</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Galerkin methods</subject><subject>GALERKIN-PETROV METHOD</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Integers</subject><subject>ITERATIVE METHODS</subject><subject>NONLINEAR PROBLEMS</subject><subject>Nonlinearity</subject><subject>NUMERICAL SOLUTION</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>SERIES EXPANSION</subject><subject>Sine function</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpF0M1KAzEUBeAgCtYqvoCLwU1Xo7lJZpIspWgr1B9Q12Emc2OnTic1SRd9e0dadHU48HG5HEIugd4AcHlLJQjK4IiMgOoilyDpMRlRysscBNOn5CzGFR26Aj4iYlZ1GL7afhKzJ0xL32TOh-zNrzGbt5_Lbpc9-75re6xC9hp83eE6npMTV3URLw45Jh8P9-_Teb54mT1O7xa5ZZymHBqpWA28dgVyp6wGiw41CK5rIaREXZVOoqJKDc6KhteWYV0pplEgKD4m1_u7PqbWRNsmtEvr-x5tMiXjglH-jzbBf28xJrPy29APfxnNeMlVWYgBTfbIBh9jQGc2oV1XYWeAmt_ZzGG2QV7t5SomH_4Yg6KUSvMfB7FlzA</recordid><startdate>19770401</startdate><enddate>19770401</enddate><creator>Dendy, J. E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>19770401</creationdate><title>Galerkin's Method for Some Highly Nonlinear Problems</title><author>Dendy, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-1d782b13bf5e3f8c91cefe91439b4477e9a6f7e808882bc4d3bc2eba829e4e183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>990200 - Mathematics & Computers</topic><topic>Application programming interfaces</topic><topic>Boundary conditions</topic><topic>BOUNDARY-VALUE PROBLEMS</topic><topic>Error rates</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Galerkin methods</topic><topic>GALERKIN-PETROV METHOD</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Integers</topic><topic>ITERATIVE METHODS</topic><topic>NONLINEAR PROBLEMS</topic><topic>Nonlinearity</topic><topic>NUMERICAL SOLUTION</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>SERIES EXPANSION</topic><topic>Sine function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dendy, J. E.</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., NM</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>SIAM J. Numer. Anal.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dendy, J. E.</au><aucorp>Los Alamos Scientific Lab., NM</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galerkin's Method for Some Highly Nonlinear Problems</atitle><jtitle>SIAM J. Numer. Anal.; (United States)</jtitle><date>1977-04-01</date><risdate>1977</risdate><volume>14</volume><issue>2</issue><spage>327</spage><epage>347</epage><pages>327-347</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0714021</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM J. Numer. Anal.; (United States), 1977-04, Vol.14 (2), p.327-347 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923638654 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | 990200 - Mathematics & Computers Application programming interfaces Boundary conditions BOUNDARY-VALUE PROBLEMS Error rates Estimates Estimation methods Galerkin methods GALERKIN-PETROV METHOD GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Integers ITERATIVE METHODS NONLINEAR PROBLEMS Nonlinearity NUMERICAL SOLUTION Ordinary differential equations Partial differential equations SERIES EXPANSION Sine function |
title | Galerkin's Method for Some Highly Nonlinear Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galerkin's%20Method%20for%20Some%20Highly%20Nonlinear%20Problems&rft.jtitle=SIAM%20J.%20Numer.%20Anal.;%20(United%20States)&rft.au=Dendy,%20J.%20E.&rft.aucorp=Los%20Alamos%20Scientific%20Lab.,%20NM&rft.date=1977-04-01&rft.volume=14&rft.issue=2&rft.spage=327&rft.epage=347&rft.pages=327-347&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0714021&rft_dat=%3Cjstor_osti_%3E2156789%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923638654&rft_id=info:pmid/&rft_jstor_id=2156789&rfr_iscdi=true |