Galerkin's Method for Some Highly Nonlinear Problems

Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM J. Numer. Anal.; (United States) 1977-04, Vol.14 (2), p.327-347
1. Verfasser: Dendy, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained.
ISSN:0036-1429
1095-7170
DOI:10.1137/0714021