Galerkin's Method for Some Highly Nonlinear Problems
Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\pa...
Gespeichert in:
Veröffentlicht in: | SIAM J. Numer. Anal.; (United States) 1977-04, Vol.14 (2), p.327-347 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Galerkin's method is analyzed for mixed initial value-boundary value problems for the following two equations:$\frac {\partial u}{\partial t} - \sum^n_{i = 1} \frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u)$and$\frac {\partial^2 u}{\partial t^2} - \sum^n_{i = 1}\frac {\partial}{\partial x_i} A_i(x, \nabla u) = f(x, t, u, \nabla u).$Optimal order H1and L2convergence estimates are obtained. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0714021 |