High-Order, Fast-Direct Methods for Separable Elliptic Equations

The Rayleigh-Ritz-Galerkin method with tensor product B-splines yields high-order discretizations for elliptic partial differential equations. For smooth problems the resulting linear system of equations is both smaller and denser than the corresponding systems for lower order discretizations. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1984-08, Vol.21 (4), p.672-694
Hauptverfasser: Kaufman, Linda, Warner, Daniel D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Rayleigh-Ritz-Galerkin method with tensor product B-splines yields high-order discretizations for elliptic partial differential equations. For smooth problems the resulting linear system of equations is both smaller and denser than the corresponding systems for lower order discretizations. However, several fast direct methods are known for solving these low order systems when the partial differential equation is separable. In this paper we show how to extend the matrix decomposition technique to yield a fast direct method for high-order, finite-element discretizations.
ISSN:0036-1429
1095-7170
DOI:10.1137/0721046