A Stable Adaptive Numerical Scheme for Hyperbolic Conservation Laws

A new adaptive finite-difference scheme for scalar hyperbolic conservation laws is introduced. A key aspect of the method is a new automatic mesh selection algorithm for problems with shocks. We show that the scheme is L1-stable in the sense of Kuznetsov, and that it generates convergent approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1985-02, Vol.22 (1), p.180-203
1. Verfasser: Lucier, Bradley J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new adaptive finite-difference scheme for scalar hyperbolic conservation laws is introduced. A key aspect of the method is a new automatic mesh selection algorithm for problems with shocks. We show that the scheme is L1-stable in the sense of Kuznetsov, and that it generates convergent approximations for linear problems. Numerical evidence is presented that indicates that if an error of size ε is required, our scheme takes at most O(ε-3) operations. Standard monotone difference schemes can take up to O(ε-4) calculations for the same problems.
ISSN:0036-1429
1095-7170
DOI:10.1137/0722012