A Stable Adaptive Numerical Scheme for Hyperbolic Conservation Laws
A new adaptive finite-difference scheme for scalar hyperbolic conservation laws is introduced. A key aspect of the method is a new automatic mesh selection algorithm for problems with shocks. We show that the scheme is L1-stable in the sense of Kuznetsov, and that it generates convergent approximati...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1985-02, Vol.22 (1), p.180-203 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new adaptive finite-difference scheme for scalar hyperbolic conservation laws is introduced. A key aspect of the method is a new automatic mesh selection algorithm for problems with shocks. We show that the scheme is L1-stable in the sense of Kuznetsov, and that it generates convergent approximations for linear problems. Numerical evidence is presented that indicates that if an error of size ε is required, our scheme takes at most O(ε-3) operations. Standard monotone difference schemes can take up to O(ε-4) calculations for the same problems. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0722012 |