Convergence of Vortex Methods for Euler's Equations, III

We prove the convergence of a large class of vortex methods for two-dimensional incompressible, inviscid flows with Holder continuous initial data. We present several infinite order methods and establish fourth order rate of convergence in the time variable when the ordinary differential equations i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1987-06, Vol.24 (3), p.538-582
1. Verfasser: Hald, Ole H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the convergence of a large class of vortex methods for two-dimensional incompressible, inviscid flows with Holder continuous initial data. We present several infinite order methods and establish fourth order rate of convergence in the time variable when the ordinary differential equations in the vortex method are solved by the classical Runge-Kutta method.
ISSN:0036-1429
1095-7170
DOI:10.1137/0724039