Convergence of Vortex Methods for Euler's Equations, III
We prove the convergence of a large class of vortex methods for two-dimensional incompressible, inviscid flows with Holder continuous initial data. We present several infinite order methods and establish fourth order rate of convergence in the time variable when the ordinary differential equations i...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1987-06, Vol.24 (3), p.538-582 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the convergence of a large class of vortex methods for two-dimensional incompressible, inviscid flows with Holder continuous initial data. We present several infinite order methods and establish fourth order rate of convergence in the time variable when the ordinary differential equations in the vortex method are solved by the classical Runge-Kutta method. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0724039 |