On the Convergence of Finite-Element Approximations of a Relaxed Variational Problem

The accuracy of finite-element approximations to a convex, but not strictly convex, variational problem is considered. Convergence is proved for a finite-element approximation of a particular vector field related to the solution. In a special one-dimensional case, 0(h) convergence is shown for a pie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1990-04, Vol.27 (2), p.419-436
1. Verfasser: French, Donald A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 2
container_start_page 419
container_title SIAM journal on numerical analysis
container_volume 27
creator French, Donald A.
description The accuracy of finite-element approximations to a convex, but not strictly convex, variational problem is considered. Convergence is proved for a finite-element approximation of a particular vector field related to the solution. In a special one-dimensional case, 0(h) convergence is shown for a piecewise linear approximation of the derivative. h denotes the size of each element domain. Numerical results are also presented for this one-dimensional case.
doi_str_mv 10.1137/0727025
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923293554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157970</jstor_id><sourcerecordid>2157970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-2962d3cf1684d52ee326d1735408d5a8855b280d0f838d44b6b33066242071c43</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFbxC3hYRPAUnd3ZfzmW0qpQqEj1GjbJRlPSbN1NpX57U1t6GmbmN483j5BrBg-MoX4EzTVweUIGDFKZaKbhlAwAUCVM8PScXMS4hL43DAdkMW9p9-Xo2Lc_Lny6tnDUV3Rat3XnkknjVq7t6Gi9Dn5br2xX-zbuAEvfXGO3rqQfNtT_c9vQ1-Dz_uSSnFW2ie7qUIfkfTpZjJ-T2fzpZTyaJQUidglPFS-xqJgyopTcOeSqZBqlAFNKa4yUOTdQQmXQlELkKkcEpbjgoFkhcEhu97q9u--Ni1229JvQG4lZypGnKOUOut9DRfAxBldl69B_En4zBtkuseyQWE_eHeRsLGxTBdsWdTziKhVMcd5jN3tsGTsfjmvOpE414B-0TnC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923293554</pqid></control><display><type>article</type><title>On the Convergence of Finite-Element Approximations of a Relaxed Variational Problem</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>French, Donald A.</creator><creatorcontrib>French, Donald A.</creatorcontrib><description>The accuracy of finite-element approximations to a convex, but not strictly convex, variational problem is considered. Convergence is proved for a finite-element approximation of a particular vector field related to the solution. In a special one-dimensional case, 0(h) convergence is shown for a piecewise linear approximation of the derivative. h denotes the size of each element domain. Numerical results are also presented for this one-dimensional case.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0727025</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Boundary conditions ; Design optimization ; Eigenvalues ; Exact sciences and technology ; Mathematical constants ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Sciences and techniques of general use ; Simpsons rule ; Vector fields</subject><ispartof>SIAM journal on numerical analysis, 1990-04, Vol.27 (2), p.419-436</ispartof><rights>Copyright 1990 Society for Industrial and Applied Mathematics</rights><rights>1990 INIST-CNRS</rights><rights>[Copyright] © 1990 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-2962d3cf1684d52ee326d1735408d5a8855b280d0f838d44b6b33066242071c43</citedby><cites>FETCH-LOGICAL-c333t-2962d3cf1684d52ee326d1735408d5a8855b280d0f838d44b6b33066242071c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157970$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2157970$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6941622$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>French, Donald A.</creatorcontrib><title>On the Convergence of Finite-Element Approximations of a Relaxed Variational Problem</title><title>SIAM journal on numerical analysis</title><description>The accuracy of finite-element approximations to a convex, but not strictly convex, variational problem is considered. Convergence is proved for a finite-element approximation of a particular vector field related to the solution. In a special one-dimensional case, 0(h) convergence is shown for a piecewise linear approximation of the derivative. h denotes the size of each element domain. Numerical results are also presented for this one-dimensional case.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Design optimization</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Mathematical constants</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Simpsons rule</subject><subject>Vector fields</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE9Lw0AQxRdRsFbxC3hYRPAUnd3ZfzmW0qpQqEj1GjbJRlPSbN1NpX57U1t6GmbmN483j5BrBg-MoX4EzTVweUIGDFKZaKbhlAwAUCVM8PScXMS4hL43DAdkMW9p9-Xo2Lc_Lny6tnDUV3Rat3XnkknjVq7t6Gi9Dn5br2xX-zbuAEvfXGO3rqQfNtT_c9vQ1-Dz_uSSnFW2ie7qUIfkfTpZjJ-T2fzpZTyaJQUidglPFS-xqJgyopTcOeSqZBqlAFNKa4yUOTdQQmXQlELkKkcEpbjgoFkhcEhu97q9u--Ni1229JvQG4lZypGnKOUOut9DRfAxBldl69B_En4zBtkuseyQWE_eHeRsLGxTBdsWdTziKhVMcd5jN3tsGTsfjmvOpE414B-0TnC8</recordid><startdate>19900401</startdate><enddate>19900401</enddate><creator>French, Donald A.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19900401</creationdate><title>On the Convergence of Finite-Element Approximations of a Relaxed Variational Problem</title><author>French, Donald A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-2962d3cf1684d52ee326d1735408d5a8855b280d0f838d44b6b33066242071c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Design optimization</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Mathematical constants</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Simpsons rule</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>French, Donald A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>French, Donald A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Convergence of Finite-Element Approximations of a Relaxed Variational Problem</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1990-04-01</date><risdate>1990</risdate><volume>27</volume><issue>2</issue><spage>419</spage><epage>436</epage><pages>419-436</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>The accuracy of finite-element approximations to a convex, but not strictly convex, variational problem is considered. Convergence is proved for a finite-element approximation of a particular vector field related to the solution. In a special one-dimensional case, 0(h) convergence is shown for a piecewise linear approximation of the derivative. h denotes the size of each element domain. Numerical results are also presented for this one-dimensional case.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0727025</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1990-04, Vol.27 (2), p.419-436
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_923293554
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Approximation
Boundary conditions
Design optimization
Eigenvalues
Exact sciences and technology
Mathematical constants
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, boundary value problems
Sciences and techniques of general use
Simpsons rule
Vector fields
title On the Convergence of Finite-Element Approximations of a Relaxed Variational Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Convergence%20of%20Finite-Element%20Approximations%20of%20a%20Relaxed%20Variational%20Problem&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=French,%20Donald%20A.&rft.date=1990-04-01&rft.volume=27&rft.issue=2&rft.spage=419&rft.epage=436&rft.pages=419-436&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0727025&rft_dat=%3Cjstor_proqu%3E2157970%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923293554&rft_id=info:pmid/&rft_jstor_id=2157970&rfr_iscdi=true