On the Convergence of Finite-Element Approximations of a Relaxed Variational Problem
The accuracy of finite-element approximations to a convex, but not strictly convex, variational problem is considered. Convergence is proved for a finite-element approximation of a particular vector field related to the solution. In a special one-dimensional case, 0(h) convergence is shown for a pie...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1990-04, Vol.27 (2), p.419-436 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accuracy of finite-element approximations to a convex, but not strictly convex, variational problem is considered. Convergence is proved for a finite-element approximation of a particular vector field related to the solution. In a special one-dimensional case, 0(h) convergence is shown for a piecewise linear approximation of the derivative. h denotes the size of each element domain. Numerical results are also presented for this one-dimensional case. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0727025 |