Ritz-Volterra Projections to Finite-Element Spaces and Applications to Integrodifferential and Related Equations
The object of this paper is to investigate the convergence of finite-element approximations to solutions of parabolic and hyperbolic integrodifferential equations, and also of equations of Sobolev and viscoelasticity type. The concept of Ritz-Volterra projection will be seen to unify much of the ana...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1991-08, Vol.28 (4), p.1047-1070 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The object of this paper is to investigate the convergence of finite-element approximations to solutions of parabolic and hyperbolic integrodifferential equations, and also of equations of Sobolev and viscoelasticity type. The concept of Ritz-Volterra projection will be seen to unify much of the analysis for the different types of problems. Optimal order error estimates are obtained in Lpfor$2 \leqq p < \infty$, and almost optimal order pointwise results given. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0728056 |