An Alternating Direction Galerkin Method for a Class of Second-Order Hyperbolic Equations in Two Space Variables
A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordin...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1991-10, Vol.28 (5), p.1265-1281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1281 |
---|---|
container_issue | 5 |
container_start_page | 1265 |
container_title | SIAM journal on numerical analysis |
container_volume | 28 |
creator | Fernandes, Ryan I. Fairweather, Graeme |
description | A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordinates with radial symmetry. Optimal a priori H10- and L2-error estimates are derived. |
doi_str_mv | 10.1137/0728067 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923246221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157867</jstor_id><sourcerecordid>2157867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-b3b145ec84898d5514f492d871f87a6228d6480689a7cd68354fc99d91fe2d93</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKv4B1wEEVyN5msmybLU2gqVLlrcDmk-NHWcjMkU6b83paWrx-Odd-BeAG4xesKY8mfEiUAVPwMDjGRZcMzRORggRKsCMyIvwVVKG5R3gekAdKMWjprexlb1vv2ELz5a3fvQwqlqbPz2LXy3_Vcw0IUIFRw3KiUYHFxaHVpTLKKxEc52nY3r0HgNJ79btf9PML-u_gJcdkpb-KGiV-vGpmtw4VST7M1xDsHqdbIaz4r5Yvo2Hs0LTXDZF2u6xqy0WjAhhSlLzByTxAiOneCqIkSYiuWcQiquTSVoyZyW0kjsLDGSDsH9QdvF8Lu1qa83YZtDNqmWhBKWDThDjwdIx5BStK7uov9RcVdjVO_LrI9lZvLhqFNJq8ZF1WqfTniJieAUZezugG1SH-LpnBNxkS3_WM97Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923246221</pqid></control><display><type>article</type><title>An Alternating Direction Galerkin Method for a Class of Second-Order Hyperbolic Equations in Two Space Variables</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Fernandes, Ryan I. ; Fairweather, Graeme</creator><creatorcontrib>Fernandes, Ryan I. ; Fairweather, Graeme</creatorcontrib><description>A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordinates with radial symmetry. Optimal a priori H10- and L2-error estimates are derived.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0728067</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Albs ; Applied mathematics ; Approximation ; Area of dominant influence ; Boundary value problems ; Cauchy Schwarz inequality ; Estimation methods ; Exact sciences and technology ; Galerkin methods ; Logical proofs ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Triangle inequalities ; Variables ; Wave equations</subject><ispartof>SIAM journal on numerical analysis, 1991-10, Vol.28 (5), p.1265-1281</ispartof><rights>Copyright 1991 Society for Industrial and Applied Mathematics</rights><rights>1992 INIST-CNRS</rights><rights>[Copyright] © 1991 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c215t-b3b145ec84898d5514f492d871f87a6228d6480689a7cd68354fc99d91fe2d93</citedby><cites>FETCH-LOGICAL-c215t-b3b145ec84898d5514f492d871f87a6228d6480689a7cd68354fc99d91fe2d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157867$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2157867$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5128730$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, Ryan I.</creatorcontrib><creatorcontrib>Fairweather, Graeme</creatorcontrib><title>An Alternating Direction Galerkin Method for a Class of Second-Order Hyperbolic Equations in Two Space Variables</title><title>SIAM journal on numerical analysis</title><description>A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordinates with radial symmetry. Optimal a priori H10- and L2-error estimates are derived.</description><subject>Albs</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Area of dominant influence</subject><subject>Boundary value problems</subject><subject>Cauchy Schwarz inequality</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Galerkin methods</subject><subject>Logical proofs</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Triangle inequalities</subject><subject>Variables</subject><subject>Wave equations</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEURYMoWKv4B1wEEVyN5msmybLU2gqVLlrcDmk-NHWcjMkU6b83paWrx-Odd-BeAG4xesKY8mfEiUAVPwMDjGRZcMzRORggRKsCMyIvwVVKG5R3gekAdKMWjprexlb1vv2ELz5a3fvQwqlqbPz2LXy3_Vcw0IUIFRw3KiUYHFxaHVpTLKKxEc52nY3r0HgNJ79btf9PML-u_gJcdkpb-KGiV-vGpmtw4VST7M1xDsHqdbIaz4r5Yvo2Hs0LTXDZF2u6xqy0WjAhhSlLzByTxAiOneCqIkSYiuWcQiquTSVoyZyW0kjsLDGSDsH9QdvF8Lu1qa83YZtDNqmWhBKWDThDjwdIx5BStK7uov9RcVdjVO_LrI9lZvLhqFNJq8ZF1WqfTniJieAUZezugG1SH-LpnBNxkS3_WM97Bg</recordid><startdate>19911001</startdate><enddate>19911001</enddate><creator>Fernandes, Ryan I.</creator><creator>Fairweather, Graeme</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19911001</creationdate><title>An Alternating Direction Galerkin Method for a Class of Second-Order Hyperbolic Equations in Two Space Variables</title><author>Fernandes, Ryan I. ; Fairweather, Graeme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-b3b145ec84898d5514f492d871f87a6228d6480689a7cd68354fc99d91fe2d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Albs</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Area of dominant influence</topic><topic>Boundary value problems</topic><topic>Cauchy Schwarz inequality</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Galerkin methods</topic><topic>Logical proofs</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Triangle inequalities</topic><topic>Variables</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Ryan I.</creatorcontrib><creatorcontrib>Fairweather, Graeme</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Ryan I.</au><au>Fairweather, Graeme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Alternating Direction Galerkin Method for a Class of Second-Order Hyperbolic Equations in Two Space Variables</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1991-10-01</date><risdate>1991</risdate><volume>28</volume><issue>5</issue><spage>1265</spage><epage>1281</epage><pages>1265-1281</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordinates with radial symmetry. Optimal a priori H10- and L2-error estimates are derived.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0728067</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1991-10, Vol.28 (5), p.1265-1281 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923246221 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Albs Applied mathematics Approximation Area of dominant influence Boundary value problems Cauchy Schwarz inequality Estimation methods Exact sciences and technology Galerkin methods Logical proofs Mathematics Methods Numerical analysis Numerical analysis. Scientific computation Sciences and techniques of general use Triangle inequalities Variables Wave equations |
title | An Alternating Direction Galerkin Method for a Class of Second-Order Hyperbolic Equations in Two Space Variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Alternating%20Direction%20Galerkin%20Method%20for%20a%20Class%20of%20Second-Order%20Hyperbolic%20Equations%20in%20Two%20Space%20Variables&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Fernandes,%20Ryan%20I.&rft.date=1991-10-01&rft.volume=28&rft.issue=5&rft.spage=1265&rft.epage=1281&rft.pages=1265-1281&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0728067&rft_dat=%3Cjstor_proqu%3E2157867%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923246221&rft_id=info:pmid/&rft_jstor_id=2157867&rfr_iscdi=true |