An Alternating Direction Galerkin Method for a Class of Second-Order Hyperbolic Equations in Two Space Variables
A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordin...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1991-10, Vol.28 (5), p.1265-1281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordinates with radial symmetry. Optimal a priori H10- and L2-error estimates are derived. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0728067 |