An Alternating Direction Galerkin Method for a Class of Second-Order Hyperbolic Equations in Two Space Variables

A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1991-10, Vol.28 (5), p.1265-1281
Hauptverfasser: Fernandes, Ryan I., Fairweather, Graeme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new alternating-direction implicit (ADI) Galerkin method is devised and analyzed for solving a certain class of second-order hyperbolic initial-boundary value problems in two space variables. This class includes the wave equation in Cartesian coordinates, polar coordinates, and cylindrical coordinates with radial symmetry. Optimal a priori H10- and L2-error estimates are derived.
ISSN:0036-1429
1095-7170
DOI:10.1137/0728067