A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions

We show how the Arnoldi algorithm for approximating a function of a matrix times a vector can be restarted in a manner analogous to restarted Krylov subspace methods for solving linear systems of equations. The resulting restarted algorithm reduces to other known algorithms for the reciprocal and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2006-01, Vol.44 (6), p.2481-2504
Hauptverfasser: Eiermann, Michael, Ernst, Oliver G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how the Arnoldi algorithm for approximating a function of a matrix times a vector can be restarted in a manner analogous to restarted Krylov subspace methods for solving linear systems of equations. The resulting restarted algorithm reduces to other known algorithms for the reciprocal and the exponential functions. We further show that the restarted algorithm inherits the superlinear convergence property of its unrestarted counterpart for entire functions and present the results of numerical experiments.
ISSN:0036-1429
1095-7170
DOI:10.1137/050633846