Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy
As interest in the potential biomedical applications of carbon nanotubes increases 1 , there is a need for methods that can image nanotubes in live cells, tissues and animals. Although techniques such as Raman 2 , 3 , 4 , photoacoustic 5 and near-infrared photoluminescence imaging 6 , 7 , 8 , 9 , 10...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2012-01, Vol.7 (1), p.56-61 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As interest in the potential biomedical applications of carbon nanotubes increases
1
, there is a need for methods that can image nanotubes in live cells, tissues and animals. Although techniques such as Raman
2
,
3
,
4
, photoacoustic
5
and near-infrared photoluminescence imaging
6
,
7
,
8
,
9
,
10
have been used to visualize nanotubes in biological environments, these techniques are limited because nanotubes provide only weak photoluminescence and low Raman scattering and it remains difficult to image both semiconducting and metallic nanotubes at the same time. Here, we show that transient absorption microscopy offers a label-free method to image both semiconducting and metallic single-walled carbon nanotubes
in vitro
and
in vivo
, in real time, with submicrometre resolution. By using appropriate near-infrared excitation wavelengths, we detect strong transient absorption signals with opposite phases from semiconducting and metallic nanotubes. Our method separates background signals generated by red blood cells and this allows us to follow the movement of both types of nanotubes inside cells and in the blood circulation and organs of mice without any significant damaging effects.
A new contrast technique allows semiconducting and metallic single-walled carbon nanotubes to be imaged separately, offering a way to study their interactions in biological environments. |
---|---|
ISSN: | 1748-3387 1748-3395 |
DOI: | 10.1038/nnano.2011.210 |