Spectrum of Quasi-Class (A,k) Operators

An operator T∈B(ℋ) is called quasi-class (A,k) if T∗k(|T2|−|T|2)Tk≥0 for a positive integer k, which is a common generalization of class A. In this paper, firstly we consider some spectral properties of quasi-class (A,k) operators; it is shown that if T is a quasi-class (A,k) operator, then the nonz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN mathematical analysis 2011-01, Vol.2011 (2011), p.1-10
Hauptverfasser: Li, Xiaochun, Gao, Fugen, Fang, Xiaochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2011
container_start_page 1
container_title ISRN mathematical analysis
container_volume 2011
creator Li, Xiaochun
Gao, Fugen
Fang, Xiaochun
description An operator T∈B(ℋ) is called quasi-class (A,k) if T∗k(|T2|−|T|2)Tk≥0 for a positive integer k, which is a common generalization of class A. In this paper, firstly we consider some spectral properties of quasi-class (A,k) operators; it is shown that if T is a quasi-class (A,k) operator, then the nonzero points of its point spectrum and joint point spectrum are identical, the eigenspaces corresponding to distinct eigenvalues of T are mutually orthogonal, and the nonzero points of its approximate point spectrum and joint approximate point spectrum are identical. Secondly, we show that Putnam's theorems hold for class A operators. Particularly, we show that if T is a class A operator and either σ(|T|) or σ(|T∗|) is not connected, then T has a nontrivial invariant subspace.
doi_str_mv 10.5402/2011/415980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_922777097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592762241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1627-e11045944bd6fa34f5ca049cd0a41f0d2e97061f6e4848f4017ec01a84a8b5bc3</originalsourceid><addsrcrecordid>eNqF0E1LAzEQgOEgCpbak2dh8eLn2kk6STbHUvyCQhH1HNJsglvb7prsIv57U1Z6NZfJ4WEGXkJOKdxxBDZmQOkYKVcFHJABAwU5CsEP938uj8koxhWkVyQ8EQNy8do424Zuk9U-e-lMrPLZ2sSYXU5vP6-yReOCaesQT8iRN-voRn9zSN4f7t9mT_l88fg8m85zSwWTuaMUkCvEZSm8maDn1gAqW4JB6qFkTkkQ1AuHBRYegUpngZoCTbHkSzsZkvN-bxPqr87FVq_qLmzTSa0Yk1KCkgnd9MiGOsbgvG5CtTHhR1PQuxZ610L3LZK-7vVHtS3Nd_UPPuuxS8R5s8coAVOyX2DmY7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922777097</pqid></control><display><type>article</type><title>Spectrum of Quasi-Class (A,k) Operators</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Xiaochun ; Gao, Fugen ; Fang, Xiaochun</creator><contributor>Kryszewski, W.</contributor><creatorcontrib>Li, Xiaochun ; Gao, Fugen ; Fang, Xiaochun ; Kryszewski, W.</creatorcontrib><description>An operator T∈B(ℋ) is called quasi-class (A,k) if T∗k(|T2|−|T|2)Tk≥0 for a positive integer k, which is a common generalization of class A. In this paper, firstly we consider some spectral properties of quasi-class (A,k) operators; it is shown that if T is a quasi-class (A,k) operator, then the nonzero points of its point spectrum and joint point spectrum are identical, the eigenspaces corresponding to distinct eigenvalues of T are mutually orthogonal, and the nonzero points of its approximate point spectrum and joint approximate point spectrum are identical. Secondly, we show that Putnam's theorems hold for class A operators. Particularly, we show that if T is a class A operator and either σ(|T|) or σ(|T∗|) is not connected, then T has a nontrivial invariant subspace.</description><identifier>ISSN: 2090-4657</identifier><identifier>EISSN: 2090-4665</identifier><identifier>DOI: 10.5402/2011/415980</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Hilbert space ; Studies</subject><ispartof>ISRN mathematical analysis, 2011-01, Vol.2011 (2011), p.1-10</ispartof><rights>Copyright © 2011 Xiaochun Li et al.</rights><rights>Copyright © 2011 Xiaochun Li et al. Xiaochun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1627-e11045944bd6fa34f5ca049cd0a41f0d2e97061f6e4848f4017ec01a84a8b5bc3</citedby><cites>FETCH-LOGICAL-c1627-e11045944bd6fa34f5ca049cd0a41f0d2e97061f6e4848f4017ec01a84a8b5bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Kryszewski, W.</contributor><creatorcontrib>Li, Xiaochun</creatorcontrib><creatorcontrib>Gao, Fugen</creatorcontrib><creatorcontrib>Fang, Xiaochun</creatorcontrib><title>Spectrum of Quasi-Class (A,k) Operators</title><title>ISRN mathematical analysis</title><description>An operator T∈B(ℋ) is called quasi-class (A,k) if T∗k(|T2|−|T|2)Tk≥0 for a positive integer k, which is a common generalization of class A. In this paper, firstly we consider some spectral properties of quasi-class (A,k) operators; it is shown that if T is a quasi-class (A,k) operator, then the nonzero points of its point spectrum and joint point spectrum are identical, the eigenspaces corresponding to distinct eigenvalues of T are mutually orthogonal, and the nonzero points of its approximate point spectrum and joint approximate point spectrum are identical. Secondly, we show that Putnam's theorems hold for class A operators. Particularly, we show that if T is a class A operator and either σ(|T|) or σ(|T∗|) is not connected, then T has a nontrivial invariant subspace.</description><subject>Hilbert space</subject><subject>Studies</subject><issn>2090-4657</issn><issn>2090-4665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0E1LAzEQgOEgCpbak2dh8eLn2kk6STbHUvyCQhH1HNJsglvb7prsIv57U1Z6NZfJ4WEGXkJOKdxxBDZmQOkYKVcFHJABAwU5CsEP938uj8koxhWkVyQ8EQNy8do424Zuk9U-e-lMrPLZ2sSYXU5vP6-yReOCaesQT8iRN-voRn9zSN4f7t9mT_l88fg8m85zSwWTuaMUkCvEZSm8maDn1gAqW4JB6qFkTkkQ1AuHBRYegUpngZoCTbHkSzsZkvN-bxPqr87FVq_qLmzTSa0Yk1KCkgnd9MiGOsbgvG5CtTHhR1PQuxZ610L3LZK-7vVHtS3Nd_UPPuuxS8R5s8coAVOyX2DmY7U</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Li, Xiaochun</creator><creator>Gao, Fugen</creator><creator>Fang, Xiaochun</creator><general>Hindawi Puplishing Corporation</general><general>International Scholarly Research Network</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>Spectrum of Quasi-Class (A,k) Operators</title><author>Li, Xiaochun ; Gao, Fugen ; Fang, Xiaochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1627-e11045944bd6fa34f5ca049cd0a41f0d2e97061f6e4848f4017ec01a84a8b5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Hilbert space</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaochun</creatorcontrib><creatorcontrib>Gao, Fugen</creatorcontrib><creatorcontrib>Fang, Xiaochun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ISRN mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaochun</au><au>Gao, Fugen</au><au>Fang, Xiaochun</au><au>Kryszewski, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrum of Quasi-Class (A,k) Operators</atitle><jtitle>ISRN mathematical analysis</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><issue>2011</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2090-4657</issn><eissn>2090-4665</eissn><abstract>An operator T∈B(ℋ) is called quasi-class (A,k) if T∗k(|T2|−|T|2)Tk≥0 for a positive integer k, which is a common generalization of class A. In this paper, firstly we consider some spectral properties of quasi-class (A,k) operators; it is shown that if T is a quasi-class (A,k) operator, then the nonzero points of its point spectrum and joint point spectrum are identical, the eigenspaces corresponding to distinct eigenvalues of T are mutually orthogonal, and the nonzero points of its approximate point spectrum and joint approximate point spectrum are identical. Secondly, we show that Putnam's theorems hold for class A operators. Particularly, we show that if T is a class A operator and either σ(|T|) or σ(|T∗|) is not connected, then T has a nontrivial invariant subspace.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.5402/2011/415980</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-4657
ispartof ISRN mathematical analysis, 2011-01, Vol.2011 (2011), p.1-10
issn 2090-4657
2090-4665
language eng
recordid cdi_proquest_journals_922777097
source EZB-FREE-00999 freely available EZB journals
subjects Hilbert space
Studies
title Spectrum of Quasi-Class (A,k) Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrum%20of%20Quasi-Class%20(A,k)%20Operators&rft.jtitle=ISRN%20mathematical%20analysis&rft.au=Li,%20Xiaochun&rft.date=2011-01-01&rft.volume=2011&rft.issue=2011&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2090-4657&rft.eissn=2090-4665&rft_id=info:doi/10.5402/2011/415980&rft_dat=%3Cproquest_cross%3E2592762241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922777097&rft_id=info:pmid/&rfr_iscdi=true