Spectrum of Quasi-Class (A,k) Operators

An operator T∈B(ℋ) is called quasi-class (A,k) if T∗k(|T2|−|T|2)Tk≥0 for a positive integer k, which is a common generalization of class A. In this paper, firstly we consider some spectral properties of quasi-class (A,k) operators; it is shown that if T is a quasi-class (A,k) operator, then the nonz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN mathematical analysis 2011-01, Vol.2011 (2011), p.1-10
Hauptverfasser: Li, Xiaochun, Gao, Fugen, Fang, Xiaochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An operator T∈B(ℋ) is called quasi-class (A,k) if T∗k(|T2|−|T|2)Tk≥0 for a positive integer k, which is a common generalization of class A. In this paper, firstly we consider some spectral properties of quasi-class (A,k) operators; it is shown that if T is a quasi-class (A,k) operator, then the nonzero points of its point spectrum and joint point spectrum are identical, the eigenspaces corresponding to distinct eigenvalues of T are mutually orthogonal, and the nonzero points of its approximate point spectrum and joint approximate point spectrum are identical. Secondly, we show that Putnam's theorems hold for class A operators. Particularly, we show that if T is a class A operator and either σ(|T|) or σ(|T∗|) is not connected, then T has a nontrivial invariant subspace.
ISSN:2090-4657
2090-4665
DOI:10.5402/2011/415980