Complexity of Bezout's Theorem IV: Probability of Success; Extensions
We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the class...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1996-02, Vol.33 (1), p.128-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 128 |
container_title | SIAM journal on numerical analysis |
container_volume | 33 |
creator | Shub, Michael Smale, Steve |
description | We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed. |
doi_str_mv | 10.1137/0733008 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922743044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2158428</jstor_id><sourcerecordid>2158428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-c663de9c1739e3e63f22a30160b5c18e72293d4f1b69ea76413a6ad32315883e3</originalsourceid><addsrcrecordid>eNpF0N9LwzAQB_AgCs4p_gM-FBH2VE1yWX7ok46pg4GC09eSZlfs6JqZtLD511tZ0afjuA93x5eQc0avGQN1QxUApfqADBg141QxRQ_JgFKQKRPcHJOTGFe06zWDAZlO_HpT4bZsdokvkgf89m0zisniE33AdTL7uE1eg89tXla9eWudwxjvkum2wTqWvo6n5KiwVcSzvg7J--N0MXlO5y9Ps8n9PHVcsyZ1UsISjWMKDAJKKDi3QJmk-dgxjYpzA0tRsFwatEoKBlbaJXBgY60BYUgu93s3wX-1GJts5dtQdyczw7kSQIXo0GiPXPAxBiyyTSjXNuwyRrPfiLI-ok5e9etsdLYqgq1dGf84N1opYTp2sWer2PjwP-6eElzDD2GHa9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922743044</pqid></control><display><type>article</type><title>Complexity of Bezout's Theorem IV: Probability of Success; Extensions</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR</source><creator>Shub, Michael ; Smale, Steve</creator><creatorcontrib>Shub, Michael ; Smale, Steve</creatorcontrib><description>We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0733008</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Approximate zero ; Complexity theory ; Computer science; control theory; systems ; Differential geometry ; Economic theory ; Exact sciences and technology ; Geometry ; Great circles ; Mathematical constants ; Mathematical theorems ; Mathematics ; Newtons method ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Polynomials ; Riemann manifold ; Sciences and techniques of general use ; Success ; Theoretical computing ; Zero</subject><ispartof>SIAM journal on numerical analysis, 1996-02, Vol.33 (1), p.128-148</ispartof><rights>Copyright 1996 Society for Industrial and Applied Mathematics</rights><rights>1996 INIST-CNRS</rights><rights>[Copyright] © 1996 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-c663de9c1739e3e63f22a30160b5c18e72293d4f1b69ea76413a6ad32315883e3</citedby><cites>FETCH-LOGICAL-c281t-c663de9c1739e3e63f22a30160b5c18e72293d4f1b69ea76413a6ad32315883e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2158428$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2158428$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,3185,27928,27929,58021,58025,58254,58258</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2987749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shub, Michael</creatorcontrib><creatorcontrib>Smale, Steve</creatorcontrib><title>Complexity of Bezout's Theorem IV: Probability of Success; Extensions</title><title>SIAM journal on numerical analysis</title><description>We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximate zero</subject><subject>Complexity theory</subject><subject>Computer science; control theory; systems</subject><subject>Differential geometry</subject><subject>Economic theory</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Great circles</subject><subject>Mathematical constants</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Newtons method</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Polynomials</subject><subject>Riemann manifold</subject><subject>Sciences and techniques of general use</subject><subject>Success</subject><subject>Theoretical computing</subject><subject>Zero</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpF0N9LwzAQB_AgCs4p_gM-FBH2VE1yWX7ok46pg4GC09eSZlfs6JqZtLD511tZ0afjuA93x5eQc0avGQN1QxUApfqADBg141QxRQ_JgFKQKRPcHJOTGFe06zWDAZlO_HpT4bZsdokvkgf89m0zisniE33AdTL7uE1eg89tXla9eWudwxjvkum2wTqWvo6n5KiwVcSzvg7J--N0MXlO5y9Ps8n9PHVcsyZ1UsISjWMKDAJKKDi3QJmk-dgxjYpzA0tRsFwatEoKBlbaJXBgY60BYUgu93s3wX-1GJts5dtQdyczw7kSQIXo0GiPXPAxBiyyTSjXNuwyRrPfiLI-ok5e9etsdLYqgq1dGf84N1opYTp2sWer2PjwP-6eElzDD2GHa9Q</recordid><startdate>19960201</startdate><enddate>19960201</enddate><creator>Shub, Michael</creator><creator>Smale, Steve</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19960201</creationdate><title>Complexity of Bezout's Theorem IV: Probability of Success; Extensions</title><author>Shub, Michael ; Smale, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-c663de9c1739e3e63f22a30160b5c18e72293d4f1b69ea76413a6ad32315883e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximate zero</topic><topic>Complexity theory</topic><topic>Computer science; control theory; systems</topic><topic>Differential geometry</topic><topic>Economic theory</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Great circles</topic><topic>Mathematical constants</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Newtons method</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Polynomials</topic><topic>Riemann manifold</topic><topic>Sciences and techniques of general use</topic><topic>Success</topic><topic>Theoretical computing</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shub, Michael</creatorcontrib><creatorcontrib>Smale, Steve</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shub, Michael</au><au>Smale, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of Bezout's Theorem IV: Probability of Success; Extensions</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1996-02-01</date><risdate>1996</risdate><volume>33</volume><issue>1</issue><spage>128</spage><epage>148</epage><pages>128-148</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0733008</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1996-02, Vol.33 (1), p.128-148 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_922743044 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Approximate zero Complexity theory Computer science control theory systems Differential geometry Economic theory Exact sciences and technology Geometry Great circles Mathematical constants Mathematical theorems Mathematics Newtons method Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Polynomials Riemann manifold Sciences and techniques of general use Success Theoretical computing Zero |
title | Complexity of Bezout's Theorem IV: Probability of Success; Extensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20Bezout's%20Theorem%20IV:%20Probability%20of%20Success;%20Extensions&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Shub,%20Michael&rft.date=1996-02-01&rft.volume=33&rft.issue=1&rft.spage=128&rft.epage=148&rft.pages=128-148&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0733008&rft_dat=%3Cjstor_proqu%3E2158428%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922743044&rft_id=info:pmid/&rft_jstor_id=2158428&rfr_iscdi=true |