Complexity of Bezout's Theorem IV: Probability of Success; Extensions

We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1996-02, Vol.33 (1), p.128-148
Hauptverfasser: Shub, Michael, Smale, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 128
container_title SIAM journal on numerical analysis
container_volume 33
creator Shub, Michael
Smale, Steve
description We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.
doi_str_mv 10.1137/0733008
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922743044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2158428</jstor_id><sourcerecordid>2158428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-c663de9c1739e3e63f22a30160b5c18e72293d4f1b69ea76413a6ad32315883e3</originalsourceid><addsrcrecordid>eNpF0N9LwzAQB_AgCs4p_gM-FBH2VE1yWX7ok46pg4GC09eSZlfs6JqZtLD511tZ0afjuA93x5eQc0avGQN1QxUApfqADBg141QxRQ_JgFKQKRPcHJOTGFe06zWDAZlO_HpT4bZsdokvkgf89m0zisniE33AdTL7uE1eg89tXla9eWudwxjvkum2wTqWvo6n5KiwVcSzvg7J--N0MXlO5y9Ps8n9PHVcsyZ1UsISjWMKDAJKKDi3QJmk-dgxjYpzA0tRsFwatEoKBlbaJXBgY60BYUgu93s3wX-1GJts5dtQdyczw7kSQIXo0GiPXPAxBiyyTSjXNuwyRrPfiLI-ok5e9etsdLYqgq1dGf84N1opYTp2sWer2PjwP-6eElzDD2GHa9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922743044</pqid></control><display><type>article</type><title>Complexity of Bezout's Theorem IV: Probability of Success; Extensions</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR</source><creator>Shub, Michael ; Smale, Steve</creator><creatorcontrib>Shub, Michael ; Smale, Steve</creatorcontrib><description>We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0733008</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Approximate zero ; Complexity theory ; Computer science; control theory; systems ; Differential geometry ; Economic theory ; Exact sciences and technology ; Geometry ; Great circles ; Mathematical constants ; Mathematical theorems ; Mathematics ; Newtons method ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Polynomials ; Riemann manifold ; Sciences and techniques of general use ; Success ; Theoretical computing ; Zero</subject><ispartof>SIAM journal on numerical analysis, 1996-02, Vol.33 (1), p.128-148</ispartof><rights>Copyright 1996 Society for Industrial and Applied Mathematics</rights><rights>1996 INIST-CNRS</rights><rights>[Copyright] © 1996 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-c663de9c1739e3e63f22a30160b5c18e72293d4f1b69ea76413a6ad32315883e3</citedby><cites>FETCH-LOGICAL-c281t-c663de9c1739e3e63f22a30160b5c18e72293d4f1b69ea76413a6ad32315883e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2158428$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2158428$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,3185,27928,27929,58021,58025,58254,58258</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2987749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shub, Michael</creatorcontrib><creatorcontrib>Smale, Steve</creatorcontrib><title>Complexity of Bezout's Theorem IV: Probability of Success; Extensions</title><title>SIAM journal on numerical analysis</title><description>We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximate zero</subject><subject>Complexity theory</subject><subject>Computer science; control theory; systems</subject><subject>Differential geometry</subject><subject>Economic theory</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Great circles</subject><subject>Mathematical constants</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Newtons method</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Polynomials</subject><subject>Riemann manifold</subject><subject>Sciences and techniques of general use</subject><subject>Success</subject><subject>Theoretical computing</subject><subject>Zero</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpF0N9LwzAQB_AgCs4p_gM-FBH2VE1yWX7ok46pg4GC09eSZlfs6JqZtLD511tZ0afjuA93x5eQc0avGQN1QxUApfqADBg141QxRQ_JgFKQKRPcHJOTGFe06zWDAZlO_HpT4bZsdokvkgf89m0zisniE33AdTL7uE1eg89tXla9eWudwxjvkum2wTqWvo6n5KiwVcSzvg7J--N0MXlO5y9Ps8n9PHVcsyZ1UsISjWMKDAJKKDi3QJmk-dgxjYpzA0tRsFwatEoKBlbaJXBgY60BYUgu93s3wX-1GJts5dtQdyczw7kSQIXo0GiPXPAxBiyyTSjXNuwyRrPfiLI-ok5e9etsdLYqgq1dGf84N1opYTp2sWer2PjwP-6eElzDD2GHa9Q</recordid><startdate>19960201</startdate><enddate>19960201</enddate><creator>Shub, Michael</creator><creator>Smale, Steve</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19960201</creationdate><title>Complexity of Bezout's Theorem IV: Probability of Success; Extensions</title><author>Shub, Michael ; Smale, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-c663de9c1739e3e63f22a30160b5c18e72293d4f1b69ea76413a6ad32315883e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximate zero</topic><topic>Complexity theory</topic><topic>Computer science; control theory; systems</topic><topic>Differential geometry</topic><topic>Economic theory</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Great circles</topic><topic>Mathematical constants</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Newtons method</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Polynomials</topic><topic>Riemann manifold</topic><topic>Sciences and techniques of general use</topic><topic>Success</topic><topic>Theoretical computing</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shub, Michael</creatorcontrib><creatorcontrib>Smale, Steve</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shub, Michael</au><au>Smale, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of Bezout's Theorem IV: Probability of Success; Extensions</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1996-02-01</date><risdate>1996</risdate><volume>33</volume><issue>1</issue><spage>128</spage><epage>148</epage><pages>128-148</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0733008</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1996-02, Vol.33 (1), p.128-148
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922743044
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximate zero
Complexity theory
Computer science
control theory
systems
Differential geometry
Economic theory
Exact sciences and technology
Geometry
Great circles
Mathematical constants
Mathematical theorems
Mathematics
Newtons method
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Polynomials
Riemann manifold
Sciences and techniques of general use
Success
Theoretical computing
Zero
title Complexity of Bezout's Theorem IV: Probability of Success; Extensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20Bezout's%20Theorem%20IV:%20Probability%20of%20Success;%20Extensions&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Shub,%20Michael&rft.date=1996-02-01&rft.volume=33&rft.issue=1&rft.spage=128&rft.epage=148&rft.pages=128-148&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0733008&rft_dat=%3Cjstor_proqu%3E2158428%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922743044&rft_id=info:pmid/&rft_jstor_id=2158428&rfr_iscdi=true