Complexity of Bezout's Theorem IV: Probability of Success; Extensions

We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1996-02, Vol.33 (1), p.128-148
Hauptverfasser: Shub, Michael, Smale, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.
ISSN:0036-1429
1095-7170
DOI:10.1137/0733008