Error Estimates for Finite Difference Methods for a Wide-Angle "Parabolic" Equation
We consider a model initial and boundary value problem for a third-order partial differential equation (PDE), a wide-angle "parabolic" equation frequently used in underwater acoustics, with depth- and range-dependent coefficients in the presence of horizontal interfaces and dissipation. Af...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1996-12, Vol.33 (6), p.2488-2509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a model initial and boundary value problem for a third-order partial differential equation (PDE), a wide-angle "parabolic" equation frequently used in underwater acoustics, with depth- and range-dependent coefficients in the presence of horizontal interfaces and dissipation. After commenting on the existence-uniqueness theory of solution of the equation, we discretize the problem by a second-order finite difference method of Crank-Nicolson type for which we prove stability and optimal-order error estimates in suitable discrete L2- H1-, and maximum norms. We also prove, under certain conditions, that the forward Euler scheme is also stable and convergent for the problem at hand. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/S0036142994266352 |