On the Stability of the Discontinuous Galerkin Method for the Heat Equation

This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1997-02, Vol.34 (1), p.389-401
Hauptverfasser: Ch. G. Makridakis, Babuska, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 1
container_start_page 389
container_title SIAM journal on numerical analysis
container_volume 34
creator Ch. G. Makridakis
Babuska, I.
description This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regularity error bounds in L2([ 0, T ]; L2(Ω)) are derived.
doi_str_mv 10.1137/S0036142994261658
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922722039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2952048</jstor_id><sourcerecordid>2952048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-7299b7a2a949569521221f7a3179f451efcffaa028bdea9d83c0a8ea43213a763</originalsourceid><addsrcrecordid>eNplkE1PAjEQhhujiYj-ABMPG-N1tTPd3W6PBhGMGA7oeTMsbSjiFtrugX_vIkQPniYz7_POF2PXwO8BhHyYcS4KyFCpDAso8vKE9YCrPJUg-Snr7eV0r5-zixBWvMtLED32Om2SuNTJLNLcrm3cJc78FJ5sqF0TbdO6NiQjWmv_aZvkTcelWyTG-R9qrCkmw21L0brmkp0ZWgd9dYx99vE8fB-M08l09DJ4nKS1QB5T2S05l4SkMpUXKkdABCNJgFQmy0Gb2hgijuV8oUktSlFzKjVlAkGQLESf3R76brzbtjrEauVa33QjK4UoEblQHQQHqPYuBK9NtfH2i_yuAl7tX1b9e1nnuTs2plDT2nhqaht-jVggFmXWYTcHbBWi839ydwrPSvENPrdy8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922722039</pqid></control><display><type>article</type><title>On the Stability of the Discontinuous Galerkin Method for the Heat Equation</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Ch. G. Makridakis ; Babuska, I.</creator><creatorcontrib>Ch. G. Makridakis ; Babuska, I.</creatorcontrib><description>This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regularity error bounds in L2([ 0, T ]; L2(Ω)) are derived.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142994261658</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Computational techniques ; Degrees of polynomials ; Error analysis ; Estimates ; Estimation methods ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; Galerkin methods ; Heat equation ; Mathematical discontinuity ; Mathematical methods in physics ; Mathematics ; Methods ; Norms ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Physics ; Polynomials ; Sciences and techniques of general use ; Spacetime</subject><ispartof>SIAM journal on numerical analysis, 1997-02, Vol.34 (1), p.389-401</ispartof><rights>Copyright 1997 Society for Industrial and Applied Mathematics</rights><rights>1997 INIST-CNRS</rights><rights>[Copyright] © 1997 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-7299b7a2a949569521221f7a3179f451efcffaa028bdea9d83c0a8ea43213a763</citedby><cites>FETCH-LOGICAL-c320t-7299b7a2a949569521221f7a3179f451efcffaa028bdea9d83c0a8ea43213a763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2952048$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2952048$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,3173,27907,27908,58000,58004,58233,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2622684$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ch. G. Makridakis</creatorcontrib><creatorcontrib>Babuska, I.</creatorcontrib><title>On the Stability of the Discontinuous Galerkin Method for the Heat Equation</title><title>SIAM journal on numerical analysis</title><description>This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regularity error bounds in L2([ 0, T ]; L2(Ω)) are derived.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Computational techniques</subject><subject>Degrees of polynomials</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Galerkin methods</subject><subject>Heat equation</subject><subject>Mathematical discontinuity</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Spacetime</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1PAjEQhhujiYj-ABMPG-N1tTPd3W6PBhGMGA7oeTMsbSjiFtrugX_vIkQPniYz7_POF2PXwO8BhHyYcS4KyFCpDAso8vKE9YCrPJUg-Snr7eV0r5-zixBWvMtLED32Om2SuNTJLNLcrm3cJc78FJ5sqF0TbdO6NiQjWmv_aZvkTcelWyTG-R9qrCkmw21L0brmkp0ZWgd9dYx99vE8fB-M08l09DJ4nKS1QB5T2S05l4SkMpUXKkdABCNJgFQmy0Gb2hgijuV8oUktSlFzKjVlAkGQLESf3R76brzbtjrEauVa33QjK4UoEblQHQQHqPYuBK9NtfH2i_yuAl7tX1b9e1nnuTs2plDT2nhqaht-jVggFmXWYTcHbBWi839ydwrPSvENPrdy8A</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>Ch. G. Makridakis</creator><creator>Babuska, I.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19970201</creationdate><title>On the Stability of the Discontinuous Galerkin Method for the Heat Equation</title><author>Ch. G. Makridakis ; Babuska, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-7299b7a2a949569521221f7a3179f451efcffaa028bdea9d83c0a8ea43213a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Computational techniques</topic><topic>Degrees of polynomials</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Galerkin methods</topic><topic>Heat equation</topic><topic>Mathematical discontinuity</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Spacetime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ch. G. Makridakis</creatorcontrib><creatorcontrib>Babuska, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ch. G. Makridakis</au><au>Babuska, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Stability of the Discontinuous Galerkin Method for the Heat Equation</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1997-02-01</date><risdate>1997</risdate><volume>34</volume><issue>1</issue><spage>389</spage><epage>401</epage><pages>389-401</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regularity error bounds in L2([ 0, T ]; L2(Ω)) are derived.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142994261658</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1997-02, Vol.34 (1), p.389-401
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922722039
source SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Applied mathematics
Approximation
Computational techniques
Degrees of polynomials
Error analysis
Estimates
Estimation methods
Exact sciences and technology
Finite element method
Finite-element and galerkin methods
Galerkin methods
Heat equation
Mathematical discontinuity
Mathematical methods in physics
Mathematics
Methods
Norms
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Physics
Polynomials
Sciences and techniques of general use
Spacetime
title On the Stability of the Discontinuous Galerkin Method for the Heat Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Stability%20of%20the%20Discontinuous%20Galerkin%20Method%20for%20the%20Heat%20Equation&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Ch.%20G.%20Makridakis&rft.date=1997-02-01&rft.volume=34&rft.issue=1&rft.spage=389&rft.epage=401&rft.pages=389-401&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/S0036142994261658&rft_dat=%3Cjstor_proqu%3E2952048%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922722039&rft_id=info:pmid/&rft_jstor_id=2952048&rfr_iscdi=true