On the Stability of the Discontinuous Galerkin Method for the Heat Equation
This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regu...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1997-02, Vol.34 (1), p.389-401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regularity error bounds in L2([ 0, T ]; L2(Ω)) are derived. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/S0036142994261658 |