On the Stability of the Discontinuous Galerkin Method for the Heat Equation

This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1997-02, Vol.34 (1), p.389-401
Hauptverfasser: Ch. G. Makridakis, Babuska, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes stability properties of a class of discontinuous Galerkin methods for the heat equation. It is shown that the finite element projection associated with these methods is stable with respect to a mesh-dependent norm--a discrete analogue of the space-time L2-norm. Optimal order-regularity error bounds in L2([ 0, T ]; L2(Ω)) are derived.
ISSN:0036-1429
1095-7170
DOI:10.1137/S0036142994261658