Finite Difference Schemes for the "Parabolic" Equation in a Variable Depth Environment with a Rigid Bottom Boundary Condition

We consider a linear, Schrödinger-type partial differential equation, the "parabolic" equation of underwater acoustics, in a layer of water bounded below by a rigid bottom of variable topography. Using a change of depth variable technique we transform the problem into one with horizontal b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2002, Vol.39 (2), p.539-565
Hauptverfasser: Akrivis, G. D., Dougalis, V. A., Zouraris, G. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a linear, Schrödinger-type partial differential equation, the "parabolic" equation of underwater acoustics, in a layer of water bounded below by a rigid bottom of variable topography. Using a change of depth variable technique we transform the problem into one with horizontal bottom for which we establish an a priori H1 estimate and prove an optimal-order error bound in the maximum norm for a Crank-Nicolson-type finite difference approximation of its solution. We also consider the same problem with an alternative rigid bottom boundary condition due to Abrahamsson and Kreiss and prove again a priori H1 estimates and optimal-order error bounds for a Crank-Nicolson scheme.
ISSN:0036-1429
1095-7170
DOI:10.1137/S0036142999367460