Finite Difference Schemes for the "Parabolic" Equation in a Variable Depth Environment with a Rigid Bottom Boundary Condition
We consider a linear, Schrödinger-type partial differential equation, the "parabolic" equation of underwater acoustics, in a layer of water bounded below by a rigid bottom of variable topography. Using a change of depth variable technique we transform the problem into one with horizontal b...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2002, Vol.39 (2), p.539-565 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a linear, Schrödinger-type partial differential equation, the "parabolic" equation of underwater acoustics, in a layer of water bounded below by a rigid bottom of variable topography. Using a change of depth variable technique we transform the problem into one with horizontal bottom for which we establish an a priori H1 estimate and prove an optimal-order error bound in the maximum norm for a Crank-Nicolson-type finite difference approximation of its solution. We also consider the same problem with an alternative rigid bottom boundary condition due to Abrahamsson and Kreiss and prove again a priori H1 estimates and optimal-order error bounds for a Crank-Nicolson scheme. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/S0036142999367460 |