Numerical Stability of Difference Equations with Matrix Coefficients

In this paper, we consider the homogeneous difference equation $\sum^k_{j = 0} \alpha_j y_{n - j} = 0, \quad n = k, k + 1, k + 2, \ldots,$ with initial values $y_j = q_j, \quad j = 0(1)k - 1.$ The yj are d-component column vectors, the αj are d × d matrices independent of n. We derive algebraic crit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1967-03, Vol.4 (1), p.119-128
1. Verfasser: Dejon, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the homogeneous difference equation $\sum^k_{j = 0} \alpha_j y_{n - j} = 0, \quad n = k, k + 1, k + 2, \ldots,$ with initial values $y_j = q_j, \quad j = 0(1)k - 1.$ The yj are d-component column vectors, the αj are d × d matrices independent of n. We derive algebraic criteria for numerical stability of the difference equation, which is understood in the sense that the solution {yj} and its difference quotients up to order s ∈ {0, 1, 2, 3, ...} depend continuously on the initial values {qj}. This generalizes the well-known case where s = 0 and the αj are diagonal matrices.
ISSN:0036-1429
1095-7170
DOI:10.1137/0704011