Numerical Stability of Difference Equations with Matrix Coefficients
In this paper, we consider the homogeneous difference equation $\sum^k_{j = 0} \alpha_j y_{n - j} = 0, \quad n = k, k + 1, k + 2, \ldots,$ with initial values $y_j = q_j, \quad j = 0(1)k - 1.$ The yj are d-component column vectors, the αj are d × d matrices independent of n. We derive algebraic crit...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1967-03, Vol.4 (1), p.119-128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the homogeneous difference equation $\sum^k_{j = 0} \alpha_j y_{n - j} = 0, \quad n = k, k + 1, k + 2, \ldots,$ with initial values $y_j = q_j, \quad j = 0(1)k - 1.$ The yj are d-component column vectors, the αj are d × d matrices independent of n. We derive algebraic criteria for numerical stability of the difference equation, which is understood in the sense that the solution {yj} and its difference quotients up to order s ∈ {0, 1, 2, 3, ...} depend continuously on the initial values {qj}. This generalizes the well-known case where s = 0 and the αj are diagonal matrices. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0704011 |