Differential-Evolution-Based Optimization of the Dynamic Response for Parallel Operation of Inverters With No Controller Interconnection

In this paper, the use of differential evolution (DE), a global search technique inspired by evolutionary theory, to find the parameters that are required to achieve optimum dynamic response of parallel operation of inverters with no interconnection among the controllers is proposed. Basically, in o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2012-07, Vol.59 (7), p.2859-2866
Hauptverfasser: Godoy, R. B., Pinto, J. O. P., Canesin, C. A., Alves Coelho, Ernane Antônio, Pinto, A. M. A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the use of differential evolution (DE), a global search technique inspired by evolutionary theory, to find the parameters that are required to achieve optimum dynamic response of parallel operation of inverters with no interconnection among the controllers is proposed. Basically, in order to reach such a goal, the system is modeled in a certain way that the slopes of P - ω and Q - V curves are the parameters to be tuned. Such parameters, when properly tuned, result in system's eigenvalues located in positions that assure the system's stability and oscillation-free dynamic response with minimum settling time. This paper describes the modeling approach and provides an overview of the motivation for the optimization and a description of the DE technique. Simulation and experimental results are also presented, and they show the viability of the proposed method.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2011.2170390